MHB Can You Solve This Intriguing Real Numbers Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The discussion presents a problem involving real numbers \(a, b, c\) that satisfy the equation \(a+b+c=abc\) and requires proving a specific identity. Participants are encouraged to submit solutions, with a link provided for guidelines. Several members, including kaliprasad, greg1313, and lfdahl, successfully solved the problem. Kaliprasad's solution is highlighted, along with an alternate approach from lfdahl. The thread emphasizes collaboration and sharing of mathematical insights among members.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Let $a,\,b,\,c$ be real numbers all different from $-1$ and $1$ such that $a+b+c=abc$.

Prove that $\dfrac{a}{1-a^2}+\dfrac{b}{1-b^2}+\dfrac{c}{1-c^2}=\dfrac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. kaliprasad
2. greg1313
3. lfdahl

Solution from kaliprasad:
Putting $a = \tan\, A, b = \tan\, B, c = \tan\, C$

We see that we have $a + b + c = abc$.

=> $\tan\, A + \tan\, B + \tan\, B = \tan\, A \tan\, B \tan\, C$
∴ $\tan ( A+B+C ) = \dfrac{\tan\, A + \tan\, B + \tan\, C -\tan\, A \tan B \tan C}{1 - \tan\, A \tan\, B - \tan\, B \tan\, C - \tan C \tan A} = 0$
∴ $A+B+C = n\pi$ for integral $n$.

$2A + 2B +2C = 2n\pi$

∴ $tan ( 2A+ 2B+ 2C ) = \tan 2n\pi = 0$

∴ $\tan 2A + \tan 2B + \tan 2C =\tan 2A \tan 2B \tan 2C$
∴ $\dfrac{2a}{1-a^2} + \dfrac{2b}{1-b^2}+ \dfrac{2c}{1-c²} = \dfrac{2a}{1-a^2} * \dfrac{2b}{1-b^2}* \dfrac{2c}{1-c²} = \dfrac{8abc}{(1-a^2)(1-b^2)(1-c^2)}$
∴ $\dfrac{a}{1-a^2} + \dfrac{b}{1-b^2}+ \dfrac{c}{1-c^2} = \dfrac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$

Alternate solution from lfdahl:
I start with the LHS and choose a common denominator: $(1-a^2)(1-b^2)(1-c^2)$:

\[\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}
= \frac{a(1-b^2)(1-c^2)+b(1-a^2)(1-c^2)+c(1-a^2)(1-b^2)}{(1-a^2)(1-b^2)(1-c^2)}\]

If I can show, that the nominator equals: $4abc$, I´m done. Along the way, I make use of the relation:
$a+b+c = abc$ (cf. the underbraces).

\[a(1-b^2)(1-c^2)+b(1-a^2)(1-c^2)+c(1-a^2)(1-b^2) \\\\ =a(1-(b^2+c^2)+b^2c^2)+b(1-(a^2+c^2)+a^2c^2)+c(1-(a^2+b^2)+a^2b^2) \\\\=a - a(b^2+c^2) + abc(bc)+ b - b(a^2+c^2)+abc(ac)+c-c(a^2+b^2)+abc(ab) \\\\=\underbrace{a+b+c}_{=abc}+abc(bc)+abc(ac)+abc(ab)-((ab)b+(ac)c+(ab)a+(bc)c+(ac)a+(bc)b) \\\\=abc+abc(bc)-b(bc)-c(bc)+abc(ac)-a(ac)-c(ac)+abc(ab)-a(ab)-b(ab) \\\\= abc+bc\underbrace{(abc-b-c)}_{=a}+ac\underbrace{(abc-a-c)}_{=b}+ab\underbrace{(abc-a-b)}_{=c} \\\\ = 4abc\]

Thus equality holds in the expression:

\[\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} = \frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}\]

whenever the three numbers $a,b$ and $c$ obey the relation: $a+b+c = abc$ and $a,b,c \notin \left \{ \pm 1 \right \}$.
 
Back
Top