Can You Solve This Intriguing Real Numbers Equation?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The equation involving real numbers \(a\), \(b\), and \(c\) states that if \(a + b + c = abc\), then it can be proven that \(\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2} = \frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}\). This problem was discussed in the Problem of the Week (POTW) on Math Help Boards, with correct solutions provided by members kaliprasad, greg1313, and lfdahl. The solutions demonstrate the application of algebraic manipulation and properties of real numbers.

PREREQUISITES
  • Understanding of algebraic manipulation
  • Familiarity with properties of real numbers
  • Knowledge of rational functions
  • Experience with mathematical proofs
NEXT STEPS
  • Study algebraic identities and their proofs
  • Explore rational function behavior and limits
  • Learn about symmetric sums in algebra
  • Investigate advanced topics in real analysis
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in problem-solving techniques in real analysis will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Let $a,\,b,\,c$ be real numbers all different from $-1$ and $1$ such that $a+b+c=abc$.

Prove that $\dfrac{a}{1-a^2}+\dfrac{b}{1-b^2}+\dfrac{c}{1-c^2}=\dfrac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. kaliprasad
2. greg1313
3. lfdahl

Solution from kaliprasad:
Putting $a = \tan\, A, b = \tan\, B, c = \tan\, C$

We see that we have $a + b + c = abc$.

=> $\tan\, A + \tan\, B + \tan\, B = \tan\, A \tan\, B \tan\, C$
∴ $\tan ( A+B+C ) = \dfrac{\tan\, A + \tan\, B + \tan\, C -\tan\, A \tan B \tan C}{1 - \tan\, A \tan\, B - \tan\, B \tan\, C - \tan C \tan A} = 0$
∴ $A+B+C = n\pi$ for integral $n$.

$2A + 2B +2C = 2n\pi$

∴ $tan ( 2A+ 2B+ 2C ) = \tan 2n\pi = 0$

∴ $\tan 2A + \tan 2B + \tan 2C =\tan 2A \tan 2B \tan 2C$
∴ $\dfrac{2a}{1-a^2} + \dfrac{2b}{1-b^2}+ \dfrac{2c}{1-c²} = \dfrac{2a}{1-a^2} * \dfrac{2b}{1-b^2}* \dfrac{2c}{1-c²} = \dfrac{8abc}{(1-a^2)(1-b^2)(1-c^2)}$
∴ $\dfrac{a}{1-a^2} + \dfrac{b}{1-b^2}+ \dfrac{c}{1-c^2} = \dfrac{4abc}{(1-a^2)(1-b^2)(1-c^2)}$

Alternate solution from lfdahl:
I start with the LHS and choose a common denominator: $(1-a^2)(1-b^2)(1-c^2)$:

\[\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}
= \frac{a(1-b^2)(1-c^2)+b(1-a^2)(1-c^2)+c(1-a^2)(1-b^2)}{(1-a^2)(1-b^2)(1-c^2)}\]

If I can show, that the nominator equals: $4abc$, I´m done. Along the way, I make use of the relation:
$a+b+c = abc$ (cf. the underbraces).

\[a(1-b^2)(1-c^2)+b(1-a^2)(1-c^2)+c(1-a^2)(1-b^2) \\\\ =a(1-(b^2+c^2)+b^2c^2)+b(1-(a^2+c^2)+a^2c^2)+c(1-(a^2+b^2)+a^2b^2) \\\\=a - a(b^2+c^2) + abc(bc)+ b - b(a^2+c^2)+abc(ac)+c-c(a^2+b^2)+abc(ab) \\\\=\underbrace{a+b+c}_{=abc}+abc(bc)+abc(ac)+abc(ab)-((ab)b+(ac)c+(ab)a+(bc)c+(ac)a+(bc)b) \\\\=abc+abc(bc)-b(bc)-c(bc)+abc(ac)-a(ac)-c(ac)+abc(ab)-a(ab)-b(ab) \\\\= abc+bc\underbrace{(abc-b-c)}_{=a}+ac\underbrace{(abc-a-c)}_{=b}+ab\underbrace{(abc-a-b)}_{=c} \\\\ = 4abc\]

Thus equality holds in the expression:

\[\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2} = \frac{4abc}{(1-a^2)(1-b^2)(1-c^2)}\]

whenever the three numbers $a,b$ and $c$ obey the relation: $a+b+c = abc$ and $a,b,c \notin \left \{ \pm 1 \right \}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K