Capstan equation, Euler's formula, power law friction

AI Thread Summary
The discussion centers on the Capstan equation and its limitations when applied to rope friction, particularly in scenarios where the input force approaches zero. Participants highlight that existing equations by Jung and Liu do not yield a zero output force when the input force is zero, which contradicts expectations based on the classical Euler equation. It is suggested that these equations may be numerical approximations not intended to handle zero tension scenarios effectively. The Capstan equation, being transcendental, should be used instead of these approximations for accurate results. Overall, the conversation emphasizes the need for clarity in applying these equations to real-world situations involving rope mechanics.
capstan1
Messages
3
Reaction score
0
TL;DR Summary
capstan equation, Eulers formula, power law friction, Problem with incoming rope force = 0
Dear colleagues,

I am dealing with rope friction and the so-called Capstan equation.
Situation: A rope wraps around a cylinder with a wrap angle. It depends on the input force.
There are very comprehensive approaches by other colleagues, where the friction value depends on the normal force or pressure.
They are presented in the following publications.

Capstan equation including bending rigidity and non-linear frictional behaviour", Jae Ho Jung, Ning Pan, Taewook Kang, doi: 10.1016/j.mechmachtheory.2007.06.002 Equation 11

" Constraint ability of superposed woven fabrics wound on capstan " , Junpeng Liu Murilo Augusto Vaz Anderson Barata Custódio, doi: 10.1016/j.mechmachtheory.2016.05.014, equation 8.

both equations have the problem described in the illustrations. If the incoming force becomes 0, then an outgoing force other than 0 will still be output. This is not possible if rope stiffness is neglected.
Symbols for Jung et al.: Incoming force T.1=0 kN. If the wrap angle theta and friction coefficient alpha are large enough, the outcoming force T.2 is already almost 0.8 kN.
Symbols for Liu et al.: Incoming force T.0=0 kN. If the wrap angle theta and friction coefficient a.1 are large enough, T.1 is already almost 3 kN.

Does anyone know the problem?

Best regards

Bastian
 

Attachments

  • Jung power law friction.JPG
    Jung power law friction.JPG
    35 KB · Views: 181
  • Liu.JPG
    Liu.JPG
    18.4 KB · Views: 181
Engineering news on Phys.org
Those equations (obviously) don't work for negative tension (you can't push a rope). It wouldn't surprise me if the authors state/imply that 'zero' (or effectively zero) tension was also not in the domain of this function.
 
Dullard said:
Those equations (obviously) don't work for negative tension (you can't push a rope). It wouldn't surprise me if the authors state/imply that 'zero' (or effectively zero) tension was also not in the domain of this function.

Hello, thank you for your quick reply. We may have misunderstood each other. I didn't mean that I want to push the rope. By the way this situation would work with the classical Euler equation.
I was wondering that with the equations at hand, near zero or at zero does not come out zero as with the classical Euler equation. I did not want to reverse the sign of the incoming rope force. Maybe you have an idea for this. Best regards and have a nice evening
Paul
 
capstan1 said:
Hello, thank you for your quick reply. We may have misunderstood each other. I didn't mean that I want to push the rope. By the way this situation would work with the classical Euler equation.
I was wondering that with the equations at hand, near zero or at zero does not come out zero as with the classical Euler equation. I did not want to reverse the sign of the incoming rope force. Maybe you have an idea for this. Best regards and have a nice evening
Paul
I am referring to the graph. The green plot shows what I mean.
1C2C2362-1C62-451D-80C1-E931563CB41C.png
 
capstan1 said:
Does anyone know the problem?
The different functions you give by Jung and by Liu appear to be numerical approximations that are not designed to pass through zero. They are special case adaptions for restricted applications.

The Capstan Equation involves the exponential function which is a transcendental function, it transcends simple algebra, yet the approximations employ normal algebra, they are not transcendental.

For those reasons, you should abandon the approximations and revert to the original exponential Capstan Equation.
https://en.wikipedia.org/wiki/Capstan_equation
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top