Cartesian and polar coordinate in Simple pendulum, Euler-Lagrange

AI Thread Summary
The discussion focuses on the application of the Euler-Lagrange equation to a simple pendulum using both Cartesian and polar coordinates. It highlights that substituting different coordinate systems simultaneously leads to incorrect results, as the pendulum has only one degree of freedom. The Lagrangian must be expressed in terms of a single independent variable, either θ, x, or y, to maintain consistency. The conversation emphasizes the importance of adhering to the constraints of degrees of freedom when applying Lagrangian mechanics. Ultimately, the pendulum's dynamics can only be accurately described using one coordinate system at a time.
Father_Ing
Messages
33
Reaction score
3
Homework Statement
Find the equation of motion of a simple pendulum.
Relevant Equations
L = T-V
Simple-Pendulum-Labeled-Diagram.png

$$L = \frac {mv^2}{2} - mgy$$
It is clear that ##\dot{x}=\dot{\theta}L## and ##y=-Lcos \theta##. After substituting these two equations to Lagrange equation, we will get the answer by simply using this equation: $$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$

But, What if we only substitute ##\dot{x}=\dot{\theta}L## to the Lagrange?
$$L = \frac {mL^2 \dot{\theta}^2}{2} - mgy$$
Then:
$$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$ $$\frac {d} {dt} \frac {∂L}{∂\dot{y}} - \frac {∂L}{∂y }= 0$$
So, We get : $$mL^2 \ddot{\theta} = 0$$

But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
 
Physics news on Phys.org
Father_Ing said:
But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
The pendulum has only one degree of freedom (independent variable), which is either ##\theta## or ##x## or ##y##.

What you have described is a different system where ##y## and ##\theta## are separate degrees of freedom. PS Although it may not make much physical sense, as there is no KE associated with movement in the ##y## direction.
 
PeroK said:
The pendulum has only one degree of freedom (independent variable), which is either θ or x or y.
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
 
If your system has ##n## degrees of freedom, then the Euler-Lagrange equations in the form you quote (known as the "second kind") require that the Lagrangian is expressed using ##n## independent generalised coordinates. Your pendulum has only one degree of freedom, so you must express ##L## in terms of either ##\theta##, or ##y##, or ##x##, or some other coordinate, but not any more than one of them!

If the number of coordinates ##\tilde{n}## exceeds the number of degrees of freedom ##n##, then given ##\tilde{n}-n## holonomic constraint equations expressing the dependencies of these coordinates on each other you can:
1. use the constraint equations to eliminate ##\tilde{n} - n## of these coordinates and get an independent set.
2. or use Lagrange multipliers and Lagrange's equations of the "first kind".
 
  • Like
Likes vanhees71 and PeroK
Father_Ing said:
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
I can't see the relevance of that. A simple pendulum has one degree of freedom. Full stop.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top