Cartesian and polar coordinate in Simple pendulum, Euler-Lagrange

Click For Summary

Homework Help Overview

The discussion revolves around the application of the Euler-Lagrange equations to a simple pendulum system, exploring the implications of using Cartesian and polar coordinates simultaneously. Participants are examining the formulation of the Lagrangian and the constraints related to degrees of freedom in the system.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss the formulation of the Lagrangian in terms of different coordinates and question the validity of using multiple coordinate systems simultaneously. There is an exploration of the degrees of freedom of the pendulum and the implications of expressing the Lagrangian with respect to different variables.

Discussion Status

The conversation is ongoing, with participants providing insights into the constraints of the system and the necessity of using a single coordinate to describe the motion. Some guidance has been offered regarding the relationship between degrees of freedom and the choice of coordinates, but no consensus has been reached.

Contextual Notes

Participants note that the simple pendulum has only one degree of freedom, which raises questions about the appropriateness of using multiple coordinates in the Lagrangian formulation. There is also a mention of the physical implications of kinetic energy associated with the different coordinates.

Father_Ing
Messages
33
Reaction score
3
Homework Statement
Find the equation of motion of a simple pendulum.
Relevant Equations
L = T-V
Simple-Pendulum-Labeled-Diagram.png

$$L = \frac {mv^2}{2} - mgy$$
It is clear that ##\dot{x}=\dot{\theta}L## and ##y=-Lcos \theta##. After substituting these two equations to Lagrange equation, we will get the answer by simply using this equation: $$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$

But, What if we only substitute ##\dot{x}=\dot{\theta}L## to the Lagrange?
$$L = \frac {mL^2 \dot{\theta}^2}{2} - mgy$$
Then:
$$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$ $$\frac {d} {dt} \frac {∂L}{∂\dot{y}} - \frac {∂L}{∂y }= 0$$
So, We get : $$mL^2 \ddot{\theta} = 0$$

But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
 
Physics news on Phys.org
Father_Ing said:
But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
The pendulum has only one degree of freedom (independent variable), which is either ##\theta## or ##x## or ##y##.

What you have described is a different system where ##y## and ##\theta## are separate degrees of freedom. PS Although it may not make much physical sense, as there is no KE associated with movement in the ##y## direction.
 
PeroK said:
The pendulum has only one degree of freedom (independent variable), which is either θ or x or y.
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
 
  • Like
Likes   Reactions: vanhees71
If your system has ##n## degrees of freedom, then the Euler-Lagrange equations in the form you quote (known as the "second kind") require that the Lagrangian is expressed using ##n## independent generalised coordinates. Your pendulum has only one degree of freedom, so you must express ##L## in terms of either ##\theta##, or ##y##, or ##x##, or some other coordinate, but not any more than one of them!

If the number of coordinates ##\tilde{n}## exceeds the number of degrees of freedom ##n##, then given ##\tilde{n}-n## holonomic constraint equations expressing the dependencies of these coordinates on each other you can:
1. use the constraint equations to eliminate ##\tilde{n} - n## of these coordinates and get an independent set.
2. or use Lagrange multipliers and Lagrange's equations of the "first kind".
 
  • Like
Likes   Reactions: vanhees71 and PeroK
Father_Ing said:
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
I can't see the relevance of that. A simple pendulum has one degree of freedom. Full stop.
 

Similar threads

Replies
8
Views
2K
Replies
1
Views
1K
Replies
73
Views
4K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
15
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K