Cartesian and polar coordinate in Simple pendulum, Euler-Lagrange

Click For Summary
The discussion focuses on the application of the Euler-Lagrange equation to a simple pendulum using both Cartesian and polar coordinates. It highlights that substituting different coordinate systems simultaneously leads to incorrect results, as the pendulum has only one degree of freedom. The Lagrangian must be expressed in terms of a single independent variable, either θ, x, or y, to maintain consistency. The conversation emphasizes the importance of adhering to the constraints of degrees of freedom when applying Lagrangian mechanics. Ultimately, the pendulum's dynamics can only be accurately described using one coordinate system at a time.
Father_Ing
Messages
33
Reaction score
3
Homework Statement
Find the equation of motion of a simple pendulum.
Relevant Equations
L = T-V
Simple-Pendulum-Labeled-Diagram.png

$$L = \frac {mv^2}{2} - mgy$$
It is clear that ##\dot{x}=\dot{\theta}L## and ##y=-Lcos \theta##. After substituting these two equations to Lagrange equation, we will get the answer by simply using this equation: $$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$

But, What if we only substitute ##\dot{x}=\dot{\theta}L## to the Lagrange?
$$L = \frac {mL^2 \dot{\theta}^2}{2} - mgy$$
Then:
$$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$ $$\frac {d} {dt} \frac {∂L}{∂\dot{y}} - \frac {∂L}{∂y }= 0$$
So, We get : $$mL^2 \ddot{\theta} = 0$$

But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
 
Physics news on Phys.org
Father_Ing said:
But, this answer definitely does not make any sense. Is this caused by using two different types of coordinate system at the same time?
If yes, then why is this prohibited?
The pendulum has only one degree of freedom (independent variable), which is either ##\theta## or ##x## or ##y##.

What you have described is a different system where ##y## and ##\theta## are separate degrees of freedom. PS Although it may not make much physical sense, as there is no KE associated with movement in the ##y## direction.
 
PeroK said:
The pendulum has only one degree of freedom (independent variable), which is either θ or x or y.
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
 
If your system has ##n## degrees of freedom, then the Euler-Lagrange equations in the form you quote (known as the "second kind") require that the Lagrangian is expressed using ##n## independent generalised coordinates. Your pendulum has only one degree of freedom, so you must express ##L## in terms of either ##\theta##, or ##y##, or ##x##, or some other coordinate, but not any more than one of them!

If the number of coordinates ##\tilde{n}## exceeds the number of degrees of freedom ##n##, then given ##\tilde{n}-n## holonomic constraint equations expressing the dependencies of these coordinates on each other you can:
1. use the constraint equations to eliminate ##\tilde{n} - n## of these coordinates and get an independent set.
2. or use Lagrange multipliers and Lagrange's equations of the "first kind".
 
  • Like
Likes vanhees71 and PeroK
Father_Ing said:
But, all three of them depends on time (because if it is not, I don't think we can differentiate it with respect to time).
I can't see the relevance of that. A simple pendulum has one degree of freedom. Full stop.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
8
Views
2K
Replies
1
Views
1K
Replies
73
Views
4K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
727
  • · Replies 6 ·
Replies
6
Views
1K
Replies
15
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K