HAL10000
- 21
- 0
Let x=e^t. Then, assuming x>0, we have t=ln(x) and
\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx} = \frac{1}{x}*\frac{dy}{dt},
\frac{d^{2}y}{dx^{2}}= \frac{1}{x}*(\frac{d^{2}y}{dx^{2}}*\frac{dt}{dx}) - \frac{1}{x^{2}}*\frac{dy}{dt} = \frac{1}{x^{2}}*(\frac{d^{2}y}{dt^{2}}-\frac{dy}{dt})
I don't understand why the derivative with respect to x of \frac{dy}{dt} is \frac{d^{2}y}{dx^{2}}*\frac{dt}{dx}
\frac{dy}{dx}=\frac{dy}{dt}*\frac{dt}{dx} = \frac{1}{x}*\frac{dy}{dt},
\frac{d^{2}y}{dx^{2}}= \frac{1}{x}*(\frac{d^{2}y}{dx^{2}}*\frac{dt}{dx}) - \frac{1}{x^{2}}*\frac{dy}{dt} = \frac{1}{x^{2}}*(\frac{d^{2}y}{dt^{2}}-\frac{dy}{dt})
I don't understand why the derivative with respect to x of \frac{dy}{dt} is \frac{d^{2}y}{dx^{2}}*\frac{dt}{dx}