Centripetal acceleration derivation

  • Thread starter Andreas C
  • Start date
  • #1
Andreas C
197
20
Ok, so I'm a bit confused by the derivation of a=v^2/r in Feynman's "Six Not-So-Easy Pieces".

In pages 17-18, it is stated that "The other component of acceleration, at right angles to the curve, is easy to calculate, using Figures 1-7 and 1-8. In the short time Δt let the change in angle between v1 and v2 be the small angle Δθ. If the magnitude of the velocity is called v, then of course Δv ┴ = vΔθ and the acceleration a will be a┴ = v(Δθ/Δt).".

1) What velocity does he refer to by v?
2) How can he multiply Δθ (an angle) by v (a magnitude of a velocity)?
3) (Probably the same as 2) How can he divide Δθ by Δt?

I haven't read the rest of the book, so maybe that's where the answer is? I don't know, it seems very weird.
 

Answers and Replies

  • #2
hackhard
183
15
1) What velocity does he refer to by v?
the net resultant velocity

2) How can he multiply Δθ (an angle) by v (a magnitude of a velocity)?
the same you multiply mass by acceleration to get force
3) (Probably the same as 2) How can he divide Δθ by Δt?
same way you divide distance by time to get speed
 
  • #3
Andreas C
197
20
the net resultant velocity


the same you multiply mass by acceleration to get force

same way you divide distance by time to get speed

Yeah, but he multiplies speed by an angle, and he gets velocity! How? And then he divides an angle with time, and multiplies it by speed, and gets acceleration!
 
  • #4
vanhees71
Science Advisor
Insights Author
Gold Member
2021 Award
20,820
11,668
An angle is a ratio of two length and thus itself dimensionless, namely arclength of the section of a circle divided by the radius of the circle. So any quantity multiplied by an angle is another quantity with the same dimension as the one you multiplied with the angle.
 
  • #5
Andreas C
197
20
Ah, I think I am beginning to understand! So this angle would be measured in radians, not degrees, right? But what does this achieve though? What does multiplying an angle by speed achieve in this context?
 
  • #6
nasu
3,957
582
When you rotate the radius by an angle θ, the arc described by the tip of the radius is s=Rθ.
Here the radius is v and the angle is very small so the cord and the arc are assumed the same thing.
 
  • #7
hackhard
183
15
New_Bitmap_Image.png

$$\triangle{v(\bot)}=\sqrt{v1^{2}+v2^{2}-2\cdot{v1}\cdot{v2}\cdot{cos(\triangle\theta)}}\cdot{cos(\triangle\theta/2)}$$
=$$\sqrt{2v^{2}-2v^{2}\cdot{cos(\triangle\theta)}}\sqrt{\frac{1+cos(\triangle\theta)}{2}}$$
=$$v\sqrt{1-{cos(\triangle\theta)}^{2}}$$
=$$v\cdot{sin(\triangle\theta)}$$
=$$v\triangle\theta$$
 
  • #8
Andreas C
197
20
Oh thanks, I get it now!
 
  • #9
wrobel
Science Advisor
Insights Author
997
858
speaking as adults when kids have gone to bed... :)

Let ##\boldsymbol r=\boldsymbol r(s)## be the space curve parameterized by arc-length parameter ##s##. And let ##\boldsymbol{T}(s),\boldsymbol{N}(s),\boldsymbol{B}(s)## be the Frenet frame. By ##\kappa(s),\tau(s)## denote the curvature and torsion respectively. https://en.wikipedia.org/wiki/Frenet–Serret_formulas
Assume that a point ##A## moves on the curve and its law of motion is ##s=s(t)##.

Theorem. The acceleration of the point ##A## is given by the formula ##\boldsymbol a_A=\ddot s\boldsymbol T+\dot s^2\kappa\boldsymbol{N}.##

(It follows immediately from the Frenet-Serret formulas by differentiating the following equality ##\boldsymbol v_A=\dot r=\dot s\boldsymbol T.##
 
  • #10
nrqed
Science Advisor
Homework Helper
Gold Member
3,764
295
New_Bitmap_Image.png

$$\triangle{v(\bot)}=\sqrt{v1^{2}+v2^{2}-2\cdot{v1}\cdot{v2}\cdot{cos(\triangle\theta)}}\cdot{cos(\triangle\theta/2)}$$
=$$\sqrt{2v^{2}-2v^{2}\cdot{cos(\triangle\theta)}}\sqrt{\frac{1+cos(\triangle\theta)}{2}}$$
=$$v\sqrt{1-{cos(\triangle\theta)}^{2}}$$
=$$v\cdot{sin(\triangle\theta)}$$
=$$v\triangle\theta$$
Note that it is a rule on the Forums to give hints and not full solutions.
 
  • #11
Andreas C
197
20
speaking as adults when kids have gone to bed... :)

Let ##\boldsymbol r=\boldsymbol r(s)## be the space curve parameterized by arc-length parameter ##s##. And let ##\boldsymbol{T}(s),\boldsymbol{N}(s),\boldsymbol{B}(s)## be the Frenet frame. By ##\kappa(s),\tau(s)## denote the curvature and torsion respectively. https://en.wikipedia.org/wiki/Frenet–Serret_formulas
Assume that a point ##A## moves on the curve and its law of motion is ##s=s(t)##.

Theorem. The acceleration of the point ##A## is given by the formula ##\boldsymbol a_A=\ddot s\boldsymbol T+\dot s^2\kappa\boldsymbol{N}.##

(It follows immediately from the Frenet-Serret formulas by differentiating the following equality ##\boldsymbol v_A=\dot r=\dot s\boldsymbol T.##

Uh... I have no idea what you just said, but thanks I guess...
 
  • #12
Andreas C
197
20
Note that it is a rule on the Forums to give hints and not full solutions.

It is? Why?
 
  • #13
wrobel
Science Advisor
Insights Author
997
858
Uh... I have no idea what you just said, but thanks I guess...
I said that the formula you are trying to derive is a special case of the general fact which is valid for any spatial curve not only for circle. And it takes one line to deduce that general formula
 
Last edited:
  • #14
Andreas C
197
20
I said that the formula you are trying to derive is a special case of the general fact which is valid for any spatial curve not only for circle. And it takes one line to deduce that general formula

Ah ok. But it only takes one line given that you know the rest of the theory behind it.
 

Suggested for: Centripetal acceleration derivation

Replies
7
Views
871
Replies
1
Views
4K
  • Last Post
Replies
1
Views
3K
Replies
2
Views
50K
Replies
5
Views
2K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
11
Views
2K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
1
Views
802
  • Last Post
Replies
7
Views
3K
Top