- #1
co0ldood
- 8
- 0
Hello all. I have a problem and I’m not sure if my analysis is 100% accurate. I hope this is the correct spot since it deals with dynamics (mechanics).
Here’s my scenario:
I have a forklift and a pallet with a box on top. I’m trying to calculate the required velocity for the box+pallet to flip around a turn.. and at what angle. Pictures have been uploaded to visualize the problem better.
http://img.photobucket.com/albums/v114/Co0lDood/prob.jpg
Here are my following assumptions:
- Forklift is 100% capable of carrying this load (forklift will NOT tilt on the turn and I can neglect the forklift all together)
- Box is latched down to pallet creating a rigid body.
- Center of gravity (CoG) is directly in the middle of the box.
- The fork lift is at constant velocity (acceleration = 0), which makes centripetal force only acting in the normal direction into the curve.
- No slipping will occur between the fork and the pallet + box.
Known
- I can calculate the velocity, radius of curvature, and all dimensions of the box/pallet.
Centripetal force is Fc= (v^2)/r (in the normal direction toward the curve)
Centrifugal force is the same in magnitude but is acting on the opposite direction at the CoG.
I calculated the angle of when my rigid system will fall over by having the CoG align vertically to point P (as seen in picture) in a static situation.
How would I go about calculating how much force is required to have my rigid body reach the angle I calculated? (so my pallet + box will flip)
I have thought about calculating the moment at point P and CoG (Sum of moment at a point in the free body diagram and equaling it to the sum of moments, at the same point, in the mass-acceleration diagram or kinetic diagram), but I can’t seem to relate it with everything else.
I'm not sure how to go about calculating angular acceleration either.
Can't seem to put everything together. I don’t think I have left anything out.
Any theories or comments would be greatly appreciated. Thank you for your time!
Here’s my scenario:
I have a forklift and a pallet with a box on top. I’m trying to calculate the required velocity for the box+pallet to flip around a turn.. and at what angle. Pictures have been uploaded to visualize the problem better.
http://img.photobucket.com/albums/v114/Co0lDood/prob.jpg
Here are my following assumptions:
- Forklift is 100% capable of carrying this load (forklift will NOT tilt on the turn and I can neglect the forklift all together)
- Box is latched down to pallet creating a rigid body.
- Center of gravity (CoG) is directly in the middle of the box.
- The fork lift is at constant velocity (acceleration = 0), which makes centripetal force only acting in the normal direction into the curve.
- No slipping will occur between the fork and the pallet + box.
Known
- I can calculate the velocity, radius of curvature, and all dimensions of the box/pallet.
Centripetal force is Fc= (v^2)/r (in the normal direction toward the curve)
Centrifugal force is the same in magnitude but is acting on the opposite direction at the CoG.
I calculated the angle of when my rigid system will fall over by having the CoG align vertically to point P (as seen in picture) in a static situation.
How would I go about calculating how much force is required to have my rigid body reach the angle I calculated? (so my pallet + box will flip)
I have thought about calculating the moment at point P and CoG (Sum of moment at a point in the free body diagram and equaling it to the sum of moments, at the same point, in the mass-acceleration diagram or kinetic diagram), but I can’t seem to relate it with everything else.
I'm not sure how to go about calculating angular acceleration either.
Can't seem to put everything together. I don’t think I have left anything out.
Any theories or comments would be greatly appreciated. Thank you for your time!