Chain Rule

  • Thread starter physicskid
  • Start date
72
0
In finding a derivative of a value, how do you know whether when to use the power rule or the chain rule? can anyone please tell me?
 

Gza

434
0
Usually any good calc textbook will walk you through the process. It's rather mechanical. If you have a function inside of another function, you differentiate the outside one and multiply it by the inside one. With the power rule, you are still using the chain rule without knowing it. For example, in differentiating the function
f(x) = x^2, you take the derivative of the "outside" (x^2) times the derivative of the "inside" (x) yielding f(x) = 2x*(1) . You multiply by one since the chain rule told you to multiply by the derivative of the inside function. I'm not sure if I answered your question, but you'd be better off taking a peek at a good calc textbook (try Stewarts), and working a few problems until you get it. It's really a skill you need to practice to understand how the rules apply.
 

rcg

6
0
If the equation is in the form f(x)=ax^n, then you can use the power rule. If it is a composite function of some form, you can use the chain rule to keep it simple. f(x)=a(x+3)^n can be expanded out and differentiated with the power rule, but it's much easier to use chain.
Although I believe that the power rule is more a derivation of first principles as opposed to application of the chain rule, you can use chain if you want to...but it's so much easier to use anx^n-1 (Power rule).
 
698
0
Its wery easy, theres no messing around. The power rule is basically the chain rule, but simpler and for easier derivatives.
Lets say we have a function
[tex] u(x) = kx^n [/tex]

[tex] \frac {d}{dx} u(x) = \frac {d(kx^n)}{dx} [/tex]

[tex] \frac {d}{dx} u(x) = (nk)x^{n-1} [/tex]

Now the chain rule. Lets say we have a function:

[tex] f(x) = (u(x))^n [/tex]

[tex] \frac {d}{dx} f(x) = \frac {d((u(x))^n)}{dx} [/tex]

[tex] \frac {d}{dx} f(x)= n(u(x))^n) \frac {d(u(x))}{dx} [/tex]

its a simple set of rules, the best way to get used to them is to practice different examples. Sorry if my notation at the end is a little funky, the latex notation is hard to work with.
 
Last edited:

mathwonk

Science Advisor
Homework Helper
10,717
893
the chain rule works on the composition of any two functions at all f(g(x)).

the power rule is the special case where the outer function is a power (g(x))^n,

i.e. here u = g(x) is anything, but f(u) = u^n.
 

Related Threads for: Chain Rule

  • Posted
Replies
2
Views
1K
  • Posted
Replies
3
Views
2K
  • Posted
Replies
6
Views
2K
  • Posted
2
Replies
30
Views
3K
  • Posted
2
Replies
25
Views
5K
  • Posted
Replies
9
Views
3K
  • Posted
Replies
1
Views
574
  • Posted
Replies
3
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top