Change in entropy of an irreversible adiabatic process

AI Thread Summary
The discussion focuses on calculating the change in entropy for an irreversible adiabatic process, emphasizing that entropy is not zero and requires a reversible path for accurate calculation. Participants express difficulty in determining final pressure (P2) and temperature (T2), with suggestions to use heat capacities and internal energy changes to find ΔT and subsequently T2. The ideal gas law is recommended for calculating P2, ensuring consistency with enthalpy changes. There is a collaborative tone, with an invitation for others to engage in the problem-solving process. The conversation highlights the complexities involved in thermodynamic calculations and the need for careful analysis.
gjb24mrspotts
Messages
1
Reaction score
0
Homework Statement
We have 5.32 L of an ideal diatomic gas at 16.3 bar and 371 K. The gas is in an insulated cylinder contained with an insulated piston. We unlock the piston and the gas expands against a constant external pressure of 1.43 bar until the piston is locked again at triple the original volume. Calculate the values of the parameters below for this process. Express all energies in J and entropy in J/K.
Relevant Equations
W= PexdV
delta U = q+ w
ds= dq/T
Screen Shot 2021-03-02 at 6.56.49 PM.png

I have been able to get everything except entropy. I know it's not zero. I know I have to find a reversible path to calculate it, but keep coming up with strange values so I don't think I'm doing it correctly.
can I do CpdT/T + CvdT/T = ds? I am having trouble calculating my P2 (I know my final pressure is not the constant external pressure) and T2.
 
Physics news on Phys.org
Please show us how you calculated T2. Also, how did you get the change in enthalpy if you do not know P2?

Please describe for us the alternative reversible process you devised to determine the change in entropy (it may involve two process steps).
 
I agree with your calculated internal energy change. For an enthalpy change, I get 1.4 times as much, or -2123 J. The next step is to determine the final temperature. You know the internal energy change, the number of moles of gas, and the heat capacity of the gas. From that, you can determine ΔT. What value do you get, and what do you get for the final temperature.

You can get the final pressure P2 knowing the final temperature and employing the ideal gas law, or from the enthalpy change, since you know ΔU, P1, V1, and V2. The values you get from both these methods should agree.
 
It doesn't look like the OP is going to return to complete this. If anyone else would like to continue for practice, please feel free to do so. I will continue to look on.

Chet
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top