Change in entropy of an irreversible adiabatic process

AI Thread Summary
The discussion focuses on calculating the change in entropy for an irreversible adiabatic process, emphasizing that entropy is not zero and requires a reversible path for accurate calculation. Participants express difficulty in determining final pressure (P2) and temperature (T2), with suggestions to use heat capacities and internal energy changes to find ΔT and subsequently T2. The ideal gas law is recommended for calculating P2, ensuring consistency with enthalpy changes. There is a collaborative tone, with an invitation for others to engage in the problem-solving process. The conversation highlights the complexities involved in thermodynamic calculations and the need for careful analysis.
gjb24mrspotts
Messages
1
Reaction score
0
Homework Statement
We have 5.32 L of an ideal diatomic gas at 16.3 bar and 371 K. The gas is in an insulated cylinder contained with an insulated piston. We unlock the piston and the gas expands against a constant external pressure of 1.43 bar until the piston is locked again at triple the original volume. Calculate the values of the parameters below for this process. Express all energies in J and entropy in J/K.
Relevant Equations
W= PexdV
delta U = q+ w
ds= dq/T
Screen Shot 2021-03-02 at 6.56.49 PM.png

I have been able to get everything except entropy. I know it's not zero. I know I have to find a reversible path to calculate it, but keep coming up with strange values so I don't think I'm doing it correctly.
can I do CpdT/T + CvdT/T = ds? I am having trouble calculating my P2 (I know my final pressure is not the constant external pressure) and T2.
 
Physics news on Phys.org
Please show us how you calculated T2. Also, how did you get the change in enthalpy if you do not know P2?

Please describe for us the alternative reversible process you devised to determine the change in entropy (it may involve two process steps).
 
I agree with your calculated internal energy change. For an enthalpy change, I get 1.4 times as much, or -2123 J. The next step is to determine the final temperature. You know the internal energy change, the number of moles of gas, and the heat capacity of the gas. From that, you can determine ΔT. What value do you get, and what do you get for the final temperature.

You can get the final pressure P2 knowing the final temperature and employing the ideal gas law, or from the enthalpy change, since you know ΔU, P1, V1, and V2. The values you get from both these methods should agree.
 
It doesn't look like the OP is going to return to complete this. If anyone else would like to continue for practice, please feel free to do so. I will continue to look on.

Chet
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top