Change in system entropy in relation to heat transfer

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Themodynamics
Click For Summary
The discussion focuses on the differences in heat transfer calculations using the energy conservation equation versus the Gibbs relation. The energy balance indicates a heat transfer of 200 kJ, while the entropy balance suggests a heat transfer of 0 kJ due to constant temperature and volume conditions. The entropy change for the system is zero, but the system transfers 0.660 kJ/K of entropy to the surroundings, leading to generated entropy. Ambiguities arise regarding the temperature at the interface between the system and surroundings during heat transfer. Overall, the contrasting results highlight the complexities in thermodynamic calculations.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations
entropy balance equation.
entropy definition formula.
1692609510763.png

Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
 
Last edited:
Physics news on Phys.org
tracker890 Source h said:
Homework Statement: Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations: entropy balance equation.
entropy definition formula.

View attachment 330839
Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
 
Last edited:
  • Like
Likes tracker890 Source h
Chestermiller said:
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
You've provided a detailed explanation, thank you. I finally understand.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
801
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
6K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K