Change in system entropy in relation to heat transfer

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Themodynamics
Click For Summary
SUMMARY

The discussion focuses on the differences between heat transfer calculated using the energy conservation equation and the Gibbs relation. The energy balance equation indicates that the net input heat, Q, equals 200 kJ, while the Gibbs relation shows that the entropy change of the system is zero, leading to a calculated heat transfer of 0 kJ. The entropy transferred from the system to the surroundings is quantified as 0.660 kJ/K, highlighting the discrepancy between the two methods of calculating heat transfer.

PREREQUISITES
  • Understanding of the energy balance equation in thermodynamics.
  • Familiarity with the Gibbs relation and its application in thermodynamics.
  • Knowledge of entropy definition and calculation methods.
  • Basic principles of heat transfer and thermodynamic systems.
NEXT STEPS
  • Study the derivation and applications of the Gibbs relation in thermodynamic processes.
  • Learn about the Clausius relationship and its implications for entropy generation.
  • Explore the concept of heat transfer in systems with varying temperatures and conditions.
  • Investigate the implications of constant temperature and volume on entropy changes in thermodynamic systems.
USEFUL FOR

Students and professionals in thermodynamics, mechanical engineers, and anyone involved in heat transfer analysis and entropy calculations.

tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations
entropy balance equation.
entropy definition formula.
1692609510763.png

Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
 
Last edited:
Physics news on Phys.org
tracker890 Source h said:
Homework Statement: Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations: entropy balance equation.
entropy definition formula.

View attachment 330839
Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
 
Last edited:
  • Like
Likes   Reactions: tracker890 Source h
Chestermiller said:
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
You've provided a detailed explanation, thank you. I finally understand.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
831
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
6K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K