Change in system entropy in relation to heat transfer

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Themodynamics
AI Thread Summary
The discussion focuses on the differences in heat transfer calculations using the energy conservation equation versus the Gibbs relation. The energy balance indicates a heat transfer of 200 kJ, while the entropy balance suggests a heat transfer of 0 kJ due to constant temperature and volume conditions. The entropy change for the system is zero, but the system transfers 0.660 kJ/K of entropy to the surroundings, leading to generated entropy. Ambiguities arise regarding the temperature at the interface between the system and surroundings during heat transfer. Overall, the contrasting results highlight the complexities in thermodynamic calculations.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations
entropy balance equation.
entropy definition formula.
1692609510763.png

Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
 
Last edited:
Physics news on Phys.org
tracker890 Source h said:
Homework Statement: Establishing the Relationship Between Input Heat for Energy Conservation and Input Heat Defined by Entropy.
Relevant Equations: entropy balance equation.
entropy definition formula.

View attachment 330839
Q: What are the differences between the heat transfer calculated by the energy conservation equation and the heat transfer determined by the Gibbs relation? ##why\ \left( ans\_1 \right) \ne \left( ans\_2 \right) ##
reference

Energy balance:
$$
Q_{in,net}-W_{out,net}=\cancel{\bigtriangleup U_{cv}}\cdots \left( 1 \right)
$$
$$
Q_{in,net}=-Q
$$
$$
W_{out,net}=-W_{in}
$$
$$
\therefore \left( 1 \right) =-Q+W_{in}=0
$$
$$
\therefore Q=W_{in}=200KJ\cdots \cdots \left( ans\_1 \right)
$$

entropy balance equation.
entropy definition formula.
Gibbs relation.
$$
dS_{sys}=\left( \frac{\delta Q}{T_k} \right) _{int.rev}\cdots \left( 2 \right)
$$
$$
\bigtriangleup S_{sys}=m\left( \frac{\cancel{du}+p\cancel{dv}}{T_k} \right) =0
$$
$$
\therefore \left( 2 \right) =0
$$
$$
\therefore Q=0KJ\cdots \cdots \left( ans\_2 \right)
$$
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
 
Last edited:
  • Like
Likes tracker890 Source h
Chestermiller said:
The entropy change of the system is zero since the gas temperature and volume are constant. The entropy transferred from the system to the surroundings is ##200/(30 + 273)=0.660\ kJ/K##. From the Clausius relationship, $$\Delta S=\frac{Q}{T_{surr}}+\sigma$$where ##\sigma## is the amount of entropy generated within the system during the process. So, $$0=-0.660+\sigma$$and the amount of generated entropy is equal to 0.660 kJ/K.

This question is a little ambiguous since, if the system is at 40 C and the surroundings are at 30 C, the system should be transferring heat to the surroundings until it too is at 30 C. But its final temperature is stated to be 40 C. It isn't clear what one should take as the temperature at the interface between the system and surroundings when the heat transfer Q and entropy transfer ##Q/T_{interface}##is occurring.
You've provided a detailed explanation, thank you. I finally understand.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top