Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Change of coordinates

  1. Aug 21, 2015 #1
    I want to understand the solutions for the PDE of 2nd order [tex]
    \begin{bmatrix}
    a_{11} & a_{12}\\
    a_{21} & a_{22}
    \end{bmatrix}:\begin{bmatrix}
    f_{xx} & f_{xy} \\
    f_{yx} & f_{yy}
    \end{bmatrix}

    +

    \begin{bmatrix}
    b_1\\
    b_2
    \end{bmatrix}\cdot
    \begin{bmatrix}
    f_x\\
    f_y
    \end{bmatrix}
    +cf=0
    [/tex] But, this depends of the associated conic equation [tex]
    \begin{bmatrix}
    a_{11} & a_{12}\\
    a_{21} & a_{22}
    \end{bmatrix}:\begin{bmatrix}
    xx & xy \\
    yx & yy
    \end{bmatrix}

    +

    \begin{bmatrix}
    b_1\\
    b_2
    \end{bmatrix}\cdot
    \begin{bmatrix}
    x\\
    y
    \end{bmatrix}
    +c=0
    [/tex] be a parbola, elipse or a hyperbola. One time that it already is known, I think that is necessary to simplify the equation eliminating terms through the change of coordinates.

    Derivating the conic wrt x [tex]
    \frac{\partial }{\partial x}\left (\begin{bmatrix}
    a_{11} & a_{12}\\
    a_{21} & a_{22}
    \end{bmatrix}:\begin{bmatrix}
    xx & xy \\
    yx & yy
    \end{bmatrix}

    +

    \begin{bmatrix}
    b_1\\
    b_2
    \end{bmatrix}\cdot
    \begin{bmatrix}
    x\\
    y
    \end{bmatrix}
    +c\right )= \frac{\partial }{\partial x}\left (0 \right ) [/tex] and wrt y [tex]
    \frac{\partial }{\partial y}\left (\begin{bmatrix}
    a_{11} & a_{12}\\
    a_{21} & a_{22}
    \end{bmatrix}:\begin{bmatrix}
    xx & xy \\
    yx & yy
    \end{bmatrix}

    +

    \begin{bmatrix}
    b_1\\
    b_2
    \end{bmatrix}\cdot
    \begin{bmatrix}
    x\\
    y
    \end{bmatrix}
    +c\right )= \frac{\partial }{\partial y}\left (0 \right )[/tex] obtains other two equations. These two news equations are straight and the intersection between they is the center of the conic of coordinates (β1, β2). So, the system (x, y) is relationed with the new system (x', y') by following vetorial equation [tex]
    \begin{bmatrix}
    x\\
    y
    \end{bmatrix}

    =

    \begin{bmatrix}
    \alpha_{11} & \alpha_{12} \\
    \alpha_{21} & \alpha_{22}
    \end{bmatrix}

    \begin{bmatrix}
    x'\\
    y'
    \end{bmatrix}

    +

    \begin{bmatrix}
    \beta_1\\
    \beta_2
    \end{bmatrix}[/tex]

    Now, is necessary know [tex]
    \begin{bmatrix}
    \alpha_{11} & \alpha_{12} \\
    \alpha_{21} & \alpha_{22}
    \end{bmatrix}[/tex] How to determinate this matrix? Will be that the Mohr circle can help me?
     
  2. jcsd
  3. Aug 26, 2015 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook