Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm a beginner at quantum mechanics and I wonder about this problem. Suppose I have found energy eigenstates of some potential, say, harmonic oscillator. Any state then can be expanded in terms of these eigenstates, and each term should be multiplied by the time factor exp(-iEt/h). What is the probability that the particle will be found in some particular eigenstate andhow does it change in time? Using orthonormality of the energy eigenstates I find that the probability is just square of the amplitude and it doesn't change in time. But then, ANY state can be expanded in energy eigenstates, so this implies that the probability to be in ANY state is constant in time. Then, how can you change anything in quantum mechanics? Add/remove energy from the system, prepare the initial mix of states, change the mix?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Change the state of system

**Physics Forums | Science Articles, Homework Help, Discussion**