I do not think so. As you see in the picture, there are two different curves. Now if you only consider their slopes, then they behave the same (at different points). If you integrate them, then the results will be the same (within different integration limits). In neither case it is a matter of notation. They were and will be two different functions. This is especially important for physicists, as the frames are important here! A mathematician could say "I don't care, I'm only interested in the geometric object", but a physicist cannot. Change of coordinates is completely uninteresting for mathematicians, physicists do nothing else! So it is not an abuse of notation, it is a lack of description from your part. Your initial question is a strict NO, and then you came up with the chain rule, which didn't make any sense without further context. ##f(u)=\sqrt{u+1}## if ##u=x## and ##f(u-1)=\sqrt{u}## if ##u=x+1##. There is literally nothing which can be abused! ##g(u)=\sqrt{u}## is a different function, in physics as in mathematics. Fullstop.
All what came after post #2 (or #4) is pure guesswork (including mine, with the exception of this one) based on lacking context, information and clarity.