Checking Stationarity of ARMA (2,1) Model

  • Thread starter Thread starter sensitive
  • Start date Start date
  • Tags Tags
    Model
sensitive
Messages
33
Reaction score
0
Is the following ARMA (2,1) model stationary?

xt + 1/6xt-1 – 1/3xt-2 = εt + 0.7εt-1

Inorder to know if a model is stationary. we check the mean, variance and the covariance and check whether it is dependent on time.

Obviously the mean is zero but my problem is how do i carry out the variance can i combine AR and MA together or do i do it separately?

and another problem is what does E[(xt-1)^2] gives me? I know E [(εt)^2] gives σ^2.

Thx
 
Physics news on Phys.org
I am not specialized in ARMA, so I may be missing something when I ask "how is the mean obviously zero"?
 
Well I should have said this earlier.

The time series is a random Gaussian noise so Zt is independent and identically distributed. hence E[Zt] = 0 --> which is the expectation(mean) and E[(Zt)^2] = σ^2 --> expectation variance.

To answer your question the expectation of each term in the equation is 0.
e.g 1/3E[xt-2] = 0
since we assume the process is stationary then E[xt-1] = E[xt] and so E[xt] α E[Zt] = 0
 
Last edited:
How are Z and x related?

If E [ε{t}^2] = σ^2, can't you solve E[(x{t})^2] = E[(-1/6x{t-1} + 1/3x{t-2} + ε{t} + 0.7ε{t-1})^2] if you assume E[(x{t})^2] = E[(x{t-s})^2] ?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top