1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Checking work on an unforced vibrations / hanging chain problem

  1. Oct 21, 2013 #1
    1. The problem statement, all variables and given/known data

    We are deriving the PDE that models a hanging chain of Length L.

    The x-axis is placed vertically. Positive direction points upwards.

    The fixed end of the chain is at x=L.

    Let [itex]u(x,t)[/itex] denote the deflection of the chain. We assume the deflection is in the x,u plane. Let [itex]\rho[/itex] denote the mass density in units of mass per length.


    A) show that in equilibrium position the tension at a point [itex]x[/itex] is [itex]\tau(x)= \rho gx [/itex] where g is the acceleration due to gravity.
    B) show that [tex]\rho \Delta x \frac{\partial ^2 u}{\partial t^2} = \frac{1}{ \Delta x}\left[\tau(x+ \Delta x) \frac{\partial u}{\partial x}( x+ \Delta x,t) - \tau(x) \frac{\partial u}{\partial x}(x,t)\right][/tex]
    C) Let [itex] \Delta x \rightarrow 0[/itex] and obtain [tex] \rho \Delta x \frac{\partial ^2 u}{\partial t^2}= \frac{\partial}{\partial x}\left[\tau(x)\frac{\partial u}{\partial x}\right][/tex]

    This is all forced vibrations, I think(???), but I am never sure what anyone means by that, I am just presenting what's in the book, you know? I had one person tell me it's unforced, hence the title of the post. The top of the chain is attached to the ceiling or something like it.

    3. The attempt at a solution

    I approached it like this:
    We know F=ma. That means [itex]\tau=ma[/itex] since [itex]a=g[/itex]

    The toal mass of the chain between the end and any point x is [itex]\rho x[/itex]

    Therefore [itex]\tau=\rho g x [/itex]

    For part B). The component of the tension in the y-axis is going to be [itex]-\tau \sin \alpha + \tau \sin \beta[/itex] because we are superposing the tension at both ends of the chain. β and α are both the angles that the hanging chain is "bent" through at either end when there's any force applied to it. [itex]-\tau \sin \alpha + \tau \sin \beta = ma = \rho g x = \rho g L = \rho g x \Delta x[/itex]. Since g is acceleration [itex] g= \frac{\partial ^2 u}{\partial x^2}[/itex] and that gets us:

    [itex] -\tau \sin \alpha + \tau \sin \beta =\rho \frac{\partial ^2 u}{\partial x^2} \Delta x[/itex]

    Now, the interesting thing here is that for most angles [itex]\tau \sin \alpha [/itex] and [itex] \tau \sin \beta[/itex] will be pretty close to [itex[\tau \tan \alpha [/itex] and [itex] \tau \tan \beta[/itex]. And the tangent on the bent string is going to describe the velocity of the bit of string at that point.

    So we can plug in the tangents to our earlier expression for the tension.

    [itex] -\tau \tan \alpha + \tau \tan \beta =\rho \frac{\partial ^2 u}{\partial t^2} \Delta x[/itex]

    Now let's look at [itex]u(x,t)[/itex] in terms of x only. The slope of the tangent to the hanging chain – that's the graph of [itex]u(x,t)[/itex] – is [itex] \frac{\partial u}{\partial x}(x,t)[/itex] which means

    [itex] \tan \alpha = \frac{\partial u}{\partial x}(x,t)[/itex] and [itex] \tan \beta = \frac{\partial u}{\partial x}(x+\Delta x,t)[/itex]

    Plug these back into the equation with the sines of alpha and beta

    [itex]-\tau \tan \alpha + \tau \tan \beta = \left[\rho \frac{\partial ^2 u}{\partial x^2} \Delta x \right] \Rightarrow \tau \left[-\frac{\partial u}{\partial x}(x+\Delta x,t) - \frac{\partial u}{\partial x}(x,t)\right] = \rho \frac{\partial ^2 u}{\partial x^2} \Delta x[/itex]

    The last step I am a bit fuzzy on. If I move the variables around a bit:

    [tex]\frac{\left[-\frac{\partial u}{\partial x}(x+\Delta x,t) - \frac{\partial u}{\partial x}(x,t)\right]}{\Delta x} = \frac{\rho}{\tau} \frac{\partial ^2 u}{\partial x^2} [/tex]

    I get a zero in the denominator as [itex]\Delta x[/itex] approaches zero. But of course I am assuming I did the rest of the problem right to begin with. I know that

    [itex]\frac{\partial}{\partial x}\left[\tau(x)\frac{\partial u}{\partial x}\right] = \left[\frac{\partial \tau(x)}{\partial x}\frac{\partial u}{\partial x} + \tau(x)\frac{\partial^2 u}{\partial x^2}\right][/itex]

    But again I feel like I am just missing the very last and probably dead simple bit at the very end.

    Anyhow sorry to make you all slog through this.
     
    Last edited: Oct 21, 2013
  2. jcsd
  3. Oct 21, 2013 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The mass at a point is infinitesimal. Can you word that better?
    What are α and β?
     
  4. Oct 21, 2013 #3
    I edited the thing to make it a bit more clear, tell me if it helps.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Checking work on an unforced vibrations / hanging chain problem
Loading...