B Circle tangent to two lines and another circle

AI Thread Summary
The discussion focuses on finding the center of a circle tangent to two perpendicular lines and another circle in OpenSCAD. The problem involves determining the coordinates (x1, y1) of the tangent circle, given its radius r and the lines at x=a and y=b. The user realizes that the distance from the origin to the center of the tangent circle must equal the sum of the radii. A quadratic equation is derived from the tangent conditions, leading to a solution for the radius R of the tangent circle. Ultimately, the center coordinates can be calculated using the derived expression for R.
Anachronist
Gold Member
Messages
123
Reaction score
59
TL;DR Summary
Find center of a circle tangent to perpendicular lines x=a and y=b, and also tangent to a circle of radius r at the origin.
I'm trying to solve this for a model I'm making in OpenSCAD.

Given a circle of radius r centered on the origin, and two perpendicular lines at x=a and y=b, where is the center (x1,y1) of a circle that is tangent to both lines and the centered circle?

Here's a picture:
1708674575479.png


I thought it would be easy, like solving for a circle that intersects 3 points, but there's something I'm not getting here. It's been 4 decades since I had to solve problems like this.

I know that the distance between (0,0) and (x1,y1) should be the sum of the two radii. I could solve it iteratively, but it feels like there should be a closed-form solution here.
 
Mathematics news on Phys.org
You have three unknowns, ##x_1, y_1, r_1## and three equations from the three tangent conditions. You will need to solve a quadratic equation.
 
Thanks, I believe I figured it out.

From the diagram, I have

##x_1^2+y_1^2 = (r+R)^2##

where ##R## is the radius of the unknown circle. I also know that ##x_1=a+R## and ##y_1=b-R##. That means

##(a+R)^2 + (b-R)^2=(r+R)^2##

and I have a quadratic expression with one unknown, ##R##. That can be solved by the quadratic equation, and I get this:

##R=b-a+r \pm \sqrt{2}\sqrt{(r-a)(b+r)}##

With that I can solve for ##(x_1,y_1)##.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top