Nano-Passion said:
1) How do these imaginary loops work. I'm talking of the ones you place arbitrarily in or around a circuit.
2) Sign Conventions
3) What is really going on within the circuits. For example, the resistors, emfs, potentials, loops, etc.
4) Why is that when you travel from a - to +, the emf is considered to be positive? And vice-versa?
1) The loops are usually drawn to indicate the direction (or assumed direction) of the flow of charges (a.k.a. the current) in the circuit. Note that we use conventional current, which is regarded as being in the direction of the flow of positive charges, even though we know that in a wire, the charge carriers are actually negative charges. In the majority of situations, there is no difference between regarding it as a flow of positive charges in one direction or a flow of negative charges in the opposite direction.
2) See my explanation of resistors below.
3) I agree with DaleSpam. This question is too vague.
4) You're moving from lower electric potential to higher electric potential. So your change in electric potential is positive. Or, to put it another way, the potential
difference, or voltage, between the point labelled "+" and the point labelled "-" is positive.
Oh, so the circuits introduced in the book have a lot of passive components? I never thought about it that way really.
Passive components are things like resistors, inductors, capacitors, maybe even diodes, that don't require additional external power in order to work. Active components are electronic (usually semiconductor) devices like transistors, and everything that you can make using transistors, including operational amplifiers, voltage comparators, and innumerable other things. These things do require external power. Active electronics are not really covered in the circuit section of a physics course. You typically only learn about them in a dedicated electronics course in an electrical engineering program. I only really brought them up in order to make the point that if you actually wanted to
build a current supply or a voltage supply that functioned somewhat like its "idealized" counterpart, then you would need to use active electronics.
The purpose of introducing the "idealized" voltage source or current source is akin to the purpose of introducing the frictionless plane or the massless rope: by removing unnecessary complications, you can focus on learning basic principles. An example of the non-ideality: a simple battery doesn't quite function as an ideal constant voltage source, because it has some internal resistance, which means that its terminal voltage depends on the load current you draw from it. Its terminal voltage also declines with time as the battery discharges. To take into account the first problem, you can
model a battery as an ideal voltage source in series with a resistor that represents the battery's internal resistance. So, as you can see, the idealized circuit devices can be useful for modelling the behaviour of real-world devices.
Excuse my incompetence with circuits and resistors-- but what does it mean to go from a direction of high potential to low in a resistor? I thought resistors are just a part where things get slowed down a bit. What is going on within the resistor?
KVL says that if you just have a voltage source in series with a resistor (and nothing else in the circuit), then any potential gained in going across the voltage source has to be lost in going across the resistor, so that the net change in potential going around the loop is zero. Therefore, there must be a difference in electric potential across the resistor. A potential difference is also known as a "voltage."
This voltage across the resistor always goes down (drops) in the direction in which the current is flowing. In other words, the charges have more potential energy "upstream" of the resistor than "downstream" of it. Where does this energy go? Charges, in flowing across a resistor, lose energy to collisions with the nuclei of the atoms in the crystal lattice of the resistive material. Said nuclei enter into vibrational motion. So the energy goes into the small scale random motions of the individual particles in the material. What's another term for energy associated with that kind of random atomic/molecular motion? Thermal energy. In other words, the energy of the charges gets dissipated as heat in the resistor.
The sentence in bold above is the rationale for the sign convention for resistors. Whatever direction you choose for the voltage drop across the resistor determines the direction of the current flow across it, or vice versa. I've attached a diagram showing this.
EDIT: As you can see above, the potential at the top point where current enters the resistor is indicated as being higher than the potential at bottom point where the current leaves the resistor. The direction of the current is the same as the direction of the voltage drop. Suppose that V
0 = +5 V and R = 1 Ω. Then KVL says V
R = V
0 = +5 V, and Ohm's law says that I = V
R/R = +5 A, where a positive current means, "in the direction indicated by the arrow."
So why do we keep telling you that it is just a convention? Aren't these directions the only right ones to choose in this situation, because of the direction of the EMF? Well, suppose I instead drew my resistor with the current and voltage drop indicated in the opposite direction, like so:
Then KVL would tell me that:
V
0 + V
R = 0
V
R = -V
0 = -5 V
So the voltage at the bottom of the resistor is "higher" than the voltage at the top by -5 V. In other words, the voltage at the top is really higher than at the bottom by 5 V (which is the same answer as we got using the opposite assumed signs).
Similarly, the current is I = V
R/R = -5 V / 1 Ω = -5 A.
So the answer for the current comes out negative, meaning that it flows in the direction opposite to what was indicated by the arrow. It flows from the top of the resistor to the bottom. This is exactly the same answer as what we got before.