Circular Motion Problem -- Ball on a String Spinning in a Vertical Circle

Click For Summary
The discussion revolves around a circular motion problem involving a ball on a string spinning in a vertical circle. The user derives the equation relating velocity and angular velocity but struggles with the two unknowns in the equation. They highlight the importance of understanding the minimum velocity needed for the string to remain taut at the top of the circle. Key considerations include the forces acting on the ball and the conditions required for maintaining tension in the string. The conversation emphasizes the need to analyze the forces at the top of the vertical circle to solve for the unknowns effectively.
Al-Layth
Messages
21
Reaction score
4
Homework Statement
A ball of 5.0 kg mass is attached to the end of a long wire and whirled around in a perfect
circle of 0.9 m radius in the vertical plane. Calculate the following:

Calculate the Minimum Velocity and Minimum Angular Velocity
Relevant Equations
#F= m\frac{v^2}{r} = mw^{2}r#

#m: Mass#
#v: Speed#
#r: Circle Radius#
#w: Angular Velocity#
#F= m\frac{v^2}{r} = mw^{2}r#

#m=5#
#r=0.9#

#F= 5\frac{v^2}{0.9} = (0.9)5w^{2}#

#5\frac{v^2}{0.9} = (0.9)5w^{2}#

#\frac{v^2}{0.9} = (0.9)w^{2}#

#v=0.9w#

then I get stuck cause I have both unknowns in one equations (i bet it has something to do with the question’s use of “minimum” but I don’t know where to go from here) so help mee thx
 
Physics news on Phys.org
The question says the circle is in the vertical plane. What else do you have to take account of in this case?
 
Where is the velocity minimal? What is required for the string to be taut there?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
948
Replies
6
Views
4K
Replies
4
Views
2K
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K