Clarification about stationary quantum states of a system

deep838
Messages
117
Reaction score
0
Okay, here goes... Our teacher set a question in the last test which asked us to show that if a system initially be in a stationary state, it will remain in a stationary state even if the system evolves according to the time dependent Schrodinger equation. What I did was show that the expectation value of the operator will not change using
∂<O>/∂t = 0
But now that I think about it, I find it really stupid! Why shouldn't the expectation value change with time? It's a quantum system after all... it's supposed to be unpredictable every instant! If I know what it is now, I shouldn't know what the system will become 2 mins later,am I right?
Anyway, I tacitly assumed that ∂ψ/∂t = 0 and ended up with that result...
What the teacher wanted was <O(t)> = <O(t0)>
Please help me get out of my own mess! Let me know if I need to clarify anything.

Thanks in advance.
 
Physics news on Phys.org
The fact that the expectation value of observables in stationary states is constant, doesn't mean the actual value of that observable is constant and you can predict it. It just means the probability distribution for that observable isn't changing. But measurements separated by finite amounts of time, still give different values for the same observable.
Also, ## \frac{\partial \psi}{\partial t}=0 ## is in general not correct for a stationary state. An stationary state is of the form ## \Psi(\vec r,t)=\psi(\vec r) e^{-i \omega t}##. So we have:
## \langle O \rangle_{\Psi}=\langle \Psi |O|\Psi \rangle= \langle \psi |e^{i \omega t}Oe^{-i \omega t}|\psi \rangle=\langle \psi |e^{i \omega t}e^{-i \omega t}O|\psi \rangle=\langle \psi |O|\psi \rangle= \langle O \rangle_{\psi}## which means ## \langle O \rangle_{\Psi}## is independent of time.
 
  • Like
Likes deep838
Shyan said:
The fact that the expectation value of observables in stationary states is constant, doesn't mean the actual value of that observable is constant and you can predict it. It just means the probability distribution for that observable isn't changing. But measurements separated by finite amounts of time, still give different values for the same observable.
Also, ## \frac{\partial \psi}{\partial t}=0 ## is in general not correct for a stationary state. An stationary state is of the form ## \Psi(\vec r,t)=\psi(\vec r) e^{-i \omega t}##. So we have:
## \langle O \rangle_{\Psi}=\langle \Psi |O|\Psi \rangle= \langle \psi |e^{i \omega t}Oe^{-i \omega t}|\psi \rangle=\langle \psi |e^{i \omega t}e^{-i \omega t}O|\psi \rangle=\langle \psi |O|\psi \rangle= \langle O \rangle_{\psi}## which means ## \langle O \rangle_{\Psi}## is independent of time.

I see... thank you for replying so early... Yes I kind of knew that ## \frac{\partial \psi}{\partial t}=0 ## is wrong... but in that short period of time I didn't even try to think... please don't start criticizing me for that...
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top