Graduate Classical uncertainty principle

Click For Summary
The classical uncertainty principle (UP) is fundamentally linked to the Fourier transform and the relationship between time and frequency measurements. It asserts that achieving high precision in measuring one quantity, such as pitch, necessitates a trade-off with the precision of measuring another, like duration. The principle primarily applies to micro-level phenomena, such as particles, rather than macro-sized objects like violin strings, where averaging effects diminish its relevance. The discussion highlights that the uncertainty principle's implications depend on the nature of the signal being analyzed. Overall, the classical UP does not apply in the same way to simple oscillators like violin strings.
Jeffrey Freed
Messages
1
Reaction score
1
What assumptions underlie the classical uncertainty principle? The principle doesn't seem to apply when I want to know the precise pitch of a tone from a bowed violin string, since I can measure the duration (as precisely as I want) of the beats produced when I interfere it with a sine wave of known frequency. The violin string is fairly simple oscillator, not a completely unknown signal, and its frequency should be constant and stable. So, does the uncertainty principle apply only when you don't know the nature of the tone you're trying to determine the pitch of?
 
Physics news on Phys.org
Jeffrey Freed said:
What assumptions underlie the classical uncertainty principle? The principle doesn't seem to apply when I want to know the precise pitch of a tone from a bowed violin string, since I can measure the duration (as precisely as I want) of the beats produced when I interfere it with a sine wave of known frequency. The violin string is fairly simple oscillator, not a completely unknown signal, and its frequency should be constant and stable. So, does the uncertainty principle apply only when you don't know the nature of the tone you're trying to determine the pitch of?
The uncertainty principle has nothing to do with violin strings, as far as I know, partly because they are macro-sized objects and everything averages out. The HUP is about micro-level things (electrons, etc) taken individually.
 
phinds said:
The uncertainty principle has nothing to do with violin strings, as far as I know, partly because they are macro-sized objects and everything averages out. The HUP is about micro-level things (electrons, etc) taken individually.

The OP is referring to the classical (AKA mathematical) UP which basically is a consequence of how the Fourier transform (and our definition of frequency) work.
In this context all it means is that if you want to measure the pitch of the string with a good accuracy you need to measure for a long time and vice versa.
 
f95toli said:
The OP is referring to the classical (AKA mathematical) UP which basically is a consequence of how the Fourier transform (and our definition of frequency) work.
Ah. Thanks for giving me that understanding.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 29 ·
Replies
29
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
8K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K