(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Consider the power series.

sigma (n=1 to infinity) x^n / [n(n+1)]

if f(x) = sigma x^n / [n(n+1)], then compute a closed-form expression for f(x).

It says: "Hint: let g(x) = x * f(x) and compute g''(x). Integrate this twice to get back to g(x) and hence derive f(x)".

2. Relevant equations

None? Well, see number 3.

3. The attempt at a solution

OK so i calculated the interval of convergence to be

-1 <= x <=1

and i'm following the hint so.

g(x) = x f( x)

and f(x) = x/2 + x²/6 + x^3 / 12 + x^4 / 20 ...

and x f(x) = x²/2 + x^3 /6 + x^4 / 12 ...

and g(x) = above.

so g'(x) = x + x²/2 + x^3 / 3 + x^4 / 4...

and g''(x) = 1 + x + x² + x^3 + x^4

and I recognized g''(x) to be the power series at x = 0 for

1 / (1 - x)

so i set g'' (x) = 1 / (1-x)

and then the hint said to integrate g''(x) twice, so

g'(x) = - ln (1-x).

now i'm stuck.How can I integrate -ln (1-x) again? or am i supposed to use what i know (i.e. f(1) = 1 and f(-1) = -1 - ln2?) (that is, i calculated the sum of f(x) if x = 1 and x = -1.

THANK YOU!!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Closed form expression for f(x) = sigma (n = 1 to infinity) for x^n / [n(n+1)]

**Physics Forums | Science Articles, Homework Help, Discussion**