Closest possible points on skew lines

  • Thread starter Thread starter lubricarret
  • Start date Start date
  • Tags Tags
    Lines Points
Click For Summary
The discussion focuses on finding the closest points P and Q on two skew lines, with P on the first line and Q on the second. The user correctly identifies the direction vectors and calculates the cross product to find a normal vector perpendicular to both lines. They seek clarification on using the projection of the vector connecting points on the lines to determine the distance between P and Q. The response confirms that the projection provides the distance and suggests setting up equations based on the normal vector to find the specific points. The user expresses understanding and appreciation for the guidance provided.
lubricarret
Messages
34
Reaction score
0

Homework Statement



Find points P,Q which are closest possible with P lying on line:
x=7-5t, y=-5+11t, z=-3-1t
and Q lying on line:
x=-354-8t, y=-194+12t, z=-73+7t

*the line joining P + Q is perpendicular to the two given lines.

Homework Equations



Projection formula, cross product...

The Attempt at a Solution



So, this is the first time I've seen a problem with skew lines, so am a bit confused how to go about this one.

I wrote the equations to be :
X_p = [7,-5,-3] + [-5,11,-1]s
X_q = [-354,-194,-73] + [-8,12,7]t

Therefore, the direction vectors are:
d_p = [-5,11,-1] and
d_q = [-8,12,7]

I took the cross product: [-5,11,-1] x [-8,12,7] to get the normal that is perpendicular to both lines, to be:
[89,43,28]

I figured I would take a point on Line P, and a point on Line Q, to get an arbitrary vector connecting the two lines; I took the points given in the equation:
[7,-5,-3] - [-354,-194,-73] to get v = [361,-189,70]

I then projected this onto the normal, so took:
proj_n_v


Am I correct in doing this? Would this proj_n_v be the distance from P to Q? If it is, what do I do now to get the two points P and Q.

Am I going about this correctly; I've never encountered this type of problem before, but see it in the practice problems on projections...


Thanks so much.
 
Physics news on Phys.org
Yes, the projection will give you the distance. To get the actual two points, write W=[89,43,28] (your cross product). Then the difference of the two points must be parallel to W. So write X_p(s)-X_q(t)=u*W. That gives you three equations in three unknowns, s,t and u. Solve them. You could also do this more directly by minimizing (X_p(s)-X_q(t))^2. (Take the two partial derivatives wrt s and t and set them to zero.).
 
Thanks for the reply Dick!

Ahh k, got it now! )
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
19K
Replies
6
Views
2K