Satvik Pandey
- 591
- 12
I got ##V=\frac { 2mvcos\theta }{ 4m+M\\ } \quad ##. Using equation ##v cos\theta=V+\frac{l\omega}{2}+v_{0} cos\alpha## and
##6V=l\omega## and ##MV=m(v_{0}cos\alpha+vcos\theta)##
and I got ##\omega =\frac { 6 }{ l } (\frac { 2mvcos\theta }{ 4m+M } )##
and ##\alpha =arcsin(\frac { vsin\theta }{ { v }_{ 0 } } )##
So ##cos\alpha =\frac { \sqrt { { v }_{ 0 }-{ v }^{ 2 }{ sin }^{ 2 }\theta } }{ { v }_{ 0 } } ##
And from energy conservation equation I got
##{ v }_{ 0 }=\sqrt { { v }^{ 2 }-\frac { 4M{ V }^{ 2 } }{ m } } ##
or ##{ v }_{ 0 }=\sqrt { { v }^{ 2 }-\frac { 4M }{ m } { \left( \frac { 2mvcos\theta }{ 4m+M\\ } \right) }^{ 2 } } ##
Now angle ACB is 90. So ##BC=lsin\phi##
Now bu applying cosine rule in triangle OBC I got
##{ (lsin\phi ) }^{ 2 }=\left( { \frac { l }{ 2 } } \right) ^{ 2 }+\left( { \frac { l }{ 2 } } \right) ^{ 2 }-2\frac { { l }^{ 2 } }{ 4 } cos(\beta )##
I have an expression of ##\phi## in terms of ##v_{0}## ##V## and ##\alpha##. Am I right till here?
##6V=l\omega## and ##MV=m(v_{0}cos\alpha+vcos\theta)##
and I got ##\omega =\frac { 6 }{ l } (\frac { 2mvcos\theta }{ 4m+M } )##
and ##\alpha =arcsin(\frac { vsin\theta }{ { v }_{ 0 } } )##
So ##cos\alpha =\frac { \sqrt { { v }_{ 0 }-{ v }^{ 2 }{ sin }^{ 2 }\theta } }{ { v }_{ 0 } } ##
And from energy conservation equation I got
##{ v }_{ 0 }=\sqrt { { v }^{ 2 }-\frac { 4M{ V }^{ 2 } }{ m } } ##
or ##{ v }_{ 0 }=\sqrt { { v }^{ 2 }-\frac { 4M }{ m } { \left( \frac { 2mvcos\theta }{ 4m+M\\ } \right) }^{ 2 } } ##
Now angle ACB is 90. So ##BC=lsin\phi##
Now bu applying cosine rule in triangle OBC I got
##{ (lsin\phi ) }^{ 2 }=\left( { \frac { l }{ 2 } } \right) ^{ 2 }+\left( { \frac { l }{ 2 } } \right) ^{ 2 }-2\frac { { l }^{ 2 } }{ 4 } cos(\beta )##
I have an expression of ##\phi## in terms of ##v_{0}## ##V## and ##\alpha##. Am I right till here?


There are so so many equations. I just forgot about the equation at start of #post21.

