MHB Compact Subsets of R .... Sohrab, Proposition 4.1.8 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Compact Subsets
Click For Summary
The discussion centers on understanding the proof of Proposition 4.1.8 from Sohrab's "Basic Real Analysis," specifically regarding the open cover of a compact subset K in R. The open cover consists of sets that exclude a limit point ξ of K, demonstrating that it covers all of R except for ξ. The argument shows that if a finite subcover existed, it would lead to a contradiction by implying that ξ is not a limit point of K. This contradiction arises because a neighborhood around ξ would intersect K, violating the initial assumption. The proof effectively illustrates the properties of limit points and compactness in real analysis.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).

I am focused on Chapter 4: Topology of [FONT=MathJax_AMS]R and Continuity ... ...

I need help in order to fully understand the proof of Proposition 4.1.8 ...Proposition 4.1.8 and its proof read as follows:View attachment 9088In the above proof by Sohrab we read the following:

" ... ... If, to get a contradiction, we assume that $$\xi \notin K$$ is a limit point of $$K$$, then the open cover $$\{ ( - \infty, \xi - 1/n) \cup ( \xi + 1/n, \infty ) \}_{ n \in \mathbb{N} }$$ has no finite subcover ... ... "
My question is as follows:

How would we demonstrate rigorously that the open cover $$\{ ( - \infty, \xi - 1/n) \cup ( \xi + 1/n, \infty ) \}_{ n \in \mathbb{N} }$$ has no finite subcover ... ...?
Help will be appreciated ...

Peter
=======================================================================================It may help readers of the above post to have access to Sohrab's definition of a limit point ... so I am providing the relevant text ... as follows ...
View attachment 9089
Hope that helps ...

Peter
 

Attachments

  • Sohrab - Proposition 4.1.8 ... .png
    Sohrab - Proposition 4.1.8 ... .png
    10.8 KB · Views: 141
  • Sohrab - Definition 2.2.11 ... Limit Point  ... .png
    Sohrab - Definition 2.2.11 ... Limit Point ... .png
    19.5 KB · Views: 132
Physics news on Phys.org
The collection
$$\left\{U_n=\left(-\infty,\,\xi-\dfrac1n\right)\cup\left(\xi+\dfrac1n,\,\infty\right):n\in\mathbb N\right\}$$
is an open cover of $K$ because $\displaystyle\bigcup_{n=1}^\infty U_n=\mathbb R\setminus\{\xi\}$ and $\xi\notin K$. If there were were a finite subcover $\{U_{n_1},\ldots,U_{n_r}\}$ then if $M=\max\{n_1,\ldots,n_r\}$ we would have $K\subseteq U_M$. But then if $I=\left(\xi-\dfrac1{M+1},\,\xi+\dfrac1{M+1}\right)$ then $\xi\in I$ and $I\cap K=\emptyset$, contradicting the assumption of $\xi$ as a limit point of $K$.
 
Olinguito said:
The collection
$$\left\{U_n=\left(-\infty,\,\xi-\dfrac1n\right)\cup\left(\xi+\dfrac1n,\,\infty\right):n\in\mathbb N\right\}$$
is an open cover of $K$ because $\displaystyle\bigcup_{n=1}^\infty U_n=\mathbb R\setminus\{\xi\}$ and $\xi\notin K$. If there were were a finite subcover $\{U_{n_1},\ldots,U_{n_r}\}$ then if $M=\max\{n_1,\ldots,n_r\}$ we would have $K\subseteq U_M$. But then if $I=\left(\xi-\dfrac1{M+1},\,\xi+\dfrac1{M+1}\right)$ then $\xi\in I$ and $I\cap K=\emptyset$, contradicting the assumption of $\xi$ as a limit point of $K$.

Thanks Olinguito ...

Appreciate your help ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K