Complete the parametric equation for the line where the planes cross

Click For Summary
SUMMARY

The discussion focuses on completing the parametric equation for the intersection of two planes defined by the equations Plane 1: x - 12z = -36 and Plane 2: -11x + 16y - 14z = -30. Participants emphasize the need to compute the cross-product of the normal vectors of the planes to find a vector parallel to the line of intersection. A typographical error in the second plane's equation is identified, suggesting it should include a '+' sign between -11x and 16y. The first parametric equation provided is x(t) = -72t, which is crucial for further calculations.

PREREQUISITES
  • Understanding of parametric equations
  • Knowledge of vector cross-products
  • Familiarity with plane equations in three-dimensional space
  • Proficiency in using LaTeX for mathematical expressions
NEXT STEPS
  • Learn how to derive parametric equations from plane equations
  • Study vector cross-product calculations in 3D geometry
  • Explore the implications of typographical errors in mathematical equations
  • Practice using LaTeX for formatting complex mathematical expressions
USEFUL FOR

Students and educators in mathematics, particularly those studying linear algebra and geometry, as well as anyone involved in solving systems of equations in three dimensions.

MP97
Messages
4
Reaction score
0
Homework Statement
Complete the parametric equation for the line where the planes cross.
Relevant Equations
Plane 1: x-12z=-36
Plane 2: -11x16y-14z=-30

Note: the first parametric equation is given as x(t)=-72t
First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.

Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
 
  • Care
Likes   Reactions: Delta2
Physics news on Phys.org
It seems you're missing a sign in Plane 2. Also, please use Latex for your Math content.
 
  • Like
Likes   Reactions: Delta2
MP97 said:
Homework Statement: Complete the parametric equation for the line where the planes cross.
Relevant Equations: Plane 1: x-12z=-36
Plane 2: -11x16y-14z=-30

Note: the first parametric equation is given as x(t)=-72t
You haven't mentioned how this equation will come into play.
MP97 said:
First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.
You don't need a unit vector for each plane, but you do need a normal vector for each one.
MP97 said:
Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
You can use the given equation of x as a function of t to solve for z in the first plane, and then use your equations of x and z as functions of t to solve for y in the second plane.

In any case, please show us what you have done.
 
MP97 said:
Complete the parametric equation for the line where the planes cross.
Plane 1: x-12z=-36
Ok the first one is a plane ...

##x-12z=-36##
##x+36=12z##
##\frac{x}{12}+\frac{36}{12}=z##
##z=\frac{x}{12}+3##

... parallel to the y axis
MP97 said:
Plane 2: -11x16y-14z=-30
An second "plane" is ...

##-11x16y-14z=-30 ##
##-176xy+30=14z##
##z= \frac{-176xy}{14}+\frac{30}{14}##

... is not a plane at all, but a saddle ( hyperbolic paraboloid )....

Wolfram Alpha -> https://www.wolframalpha.com/input?i=z=+\frac{-176xy}{14}+\frac{30}{14}

MP97 said:
Note: the first parametric equation is given as x(t)=-72t

First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.

Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
... I don't understand the goal?
 
Bosko said:
Ok the first one is a plane ...

##x-12z=-36##

... parallel to the y axis

An second "plane" is ...

##-11x16y-14z=-30 ##
##-176xy+30=14z##
##z= \frac{-176xy}{14}+\frac{30}{14}##

... is not a plane at all, but a saddle ( hyperbolic paraboloid )....
Very likely, there is a typographical error in the equation for the second plane. Probably it should be
##\displaystyle -11x+16y-14z=-30 \ \ ## or ##\displaystyle \ \ -11x-16y-14z=-30 ##.

If OP had shown us any significant amount of his work on this problem, the correct equation would have been evident.
 
  • Like
Likes   Reactions: WWGD and Bosko
SammyS said:
Very likely, there is a typographical error in the equation for the second plane. Probably it should be
##\displaystyle -11x+16y-14z=-30 \ \ ## or ##\displaystyle \ \ -11x-16y-14z=-30 ##.

If OP had shown us any significant amount of his work on this problem, the correct equation would have been evident.
I had asked for clarification in that respect too.
 
Bosko said:
##-11x16y-14z=-30 ##
I'm 99.44% certain that the equation above is missing a '+' sign between -11x and 16y.
 
  • Love
  • Like
Likes   Reactions: Bosko and SammyS
Mark44 said:
I'm 99.44% certain that the equation above is missing a '+' sign between -11x and 16y.
Me to, either + or - sign.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
7K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K