Complete the parametric equation for the line where the planes cross

AI Thread Summary
The discussion revolves around completing the parametric equation for the line where two planes intersect. The first plane is correctly identified, while the second equation is likely erroneous, possibly missing a '+' sign between terms. Participants suggest using the cross-product of the planes' normal vectors to find a direction vector for the line of intersection. There is confusion regarding the lack of a y-coordinate in the first plane's equation, which can be resolved by substituting values from the parametric equation. Clarification on the equations is essential for progressing with the solution.
MP97
Messages
4
Reaction score
0
Homework Statement
Complete the parametric equation for the line where the planes cross.
Relevant Equations
Plane 1: x-12z=-36
Plane 2: -11x16y-14z=-30

Note: the first parametric equation is given as x(t)=-72t
First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.

Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
 
Physics news on Phys.org
It seems you're missing a sign in Plane 2. Also, please use Latex for your Math content.
 
MP97 said:
Homework Statement: Complete the parametric equation for the line where the planes cross.
Relevant Equations: Plane 1: x-12z=-36
Plane 2: -11x16y-14z=-30

Note: the first parametric equation is given as x(t)=-72t
You haven't mentioned how this equation will come into play.
MP97 said:
First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.
You don't need a unit vector for each plane, but you do need a normal vector for each one.
MP97 said:
Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
You can use the given equation of x as a function of t to solve for z in the first plane, and then use your equations of x and z as functions of t to solve for y in the second plane.

In any case, please show us what you have done.
 
MP97 said:
Complete the parametric equation for the line where the planes cross.
Plane 1: x-12z=-36
Ok the first one is a plane ...

##x-12z=-36##
##x+36=12z##
##\frac{x}{12}+\frac{36}{12}=z##
##z=\frac{x}{12}+3##

... parallel to the y axis
MP97 said:
Plane 2: -11x16y-14z=-30
An second "plane" is ...

##-11x16y-14z=-30 ##
##-176xy+30=14z##
##z= \frac{-176xy}{14}+\frac{30}{14}##

... is not a plane at all, but a saddle ( hyperbolic paraboloid )....

Wolfram Alpha -> https://www.wolframalpha.com/input?i=z=+\frac{-176xy}{14}+\frac{30}{14}

MP97 said:
Note: the first parametric equation is given as x(t)=-72t

First, I use the unit vector of each plane, and I compute their cross-product to obtain a vector parallel to the line of interception.

Then, I algebraically use x=0 to obtain the coordinates of the point in the line of interception. However, not having a y coordinate in plane one is confusing me.
... I don't understand the goal?
 
Bosko said:
Ok the first one is a plane ...

##x-12z=-36##

... parallel to the y axis

An second "plane" is ...

##-11x16y-14z=-30 ##
##-176xy+30=14z##
##z= \frac{-176xy}{14}+\frac{30}{14}##

... is not a plane at all, but a saddle ( hyperbolic paraboloid )....
Very likely, there is a typographical error in the equation for the second plane. Probably it should be
##\displaystyle -11x+16y-14z=-30 \ \ ## or ##\displaystyle \ \ -11x-16y-14z=-30 ##.

If OP had shown us any significant amount of his work on this problem, the correct equation would have been evident.
 
  • Like
Likes WWGD and Bosko
SammyS said:
Very likely, there is a typographical error in the equation for the second plane. Probably it should be
##\displaystyle -11x+16y-14z=-30 \ \ ## or ##\displaystyle \ \ -11x-16y-14z=-30 ##.

If OP had shown us any significant amount of his work on this problem, the correct equation would have been evident.
I had asked for clarification in that respect too.
 
Bosko said:
##-11x16y-14z=-30 ##
I'm 99.44% certain that the equation above is missing a '+' sign between -11x and 16y.
 
  • Love
  • Like
Likes Bosko and SammyS
Mark44 said:
I'm 99.44% certain that the equation above is missing a '+' sign between -11x and 16y.
Me to, either + or - sign.
 
Back
Top