1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Complex variables- graphing an equation

  1. Sep 13, 2011 #1
    1. The problem statement, all variables and given/known data


    Suppose that c is a member of the Real numbers, and p is a member of the Complex numbers with p not equal to 0, are given numbers.

    (a) Show that pz + conjugate(pz) + c = 0 is the equation of a straight line in the plane.


    Provide a carefully-drawn plot that illustrates your solution for a few given values of the constants c and p .


    2. Relevant equations


    z is a complex number (i.e. x+iy)


    3. The attempt at a solution

    a) After simplifying the conjugates: px +ipy + px - ipy + c = 0
    After collecting like terms: 2px + c = 0
    Solving for x: x = -0.5(c/p)


    Now, I don't understand how the graph would look like. Would it be a vertical line on the real vs imaginary axes?

    Thank you.
     
  2. jcsd
  3. Sep 13, 2011 #2
    Looks like it to me.
     
  4. Sep 13, 2011 #3

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    I thought you said that p was a complex number; it does not appear so in what you have done.

    RGV
     
  5. Sep 13, 2011 #4
    p is a constant that is a member of the set of complex numbers. Does that make sense?
     
  6. Sep 15, 2011 #5
    I see what you mean now, Ray. I think I got it now!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Complex variables- graphing an equation
Loading...