Compressed Air Engine Calculations

AI Thread Summary
The discussion focuses on calculating power and torque values for a single-cylinder compressed air engine operating at a constant inlet pressure of 9 bar. The user seeks assistance with their calculations, which appear inconsistent with MATLAB and experimental results. Clarifications are requested regarding the engine type, specifically whether it is a reciprocating engine or a continuous flow machine. The conversation highlights the need for more realistic assumptions in the calculations, particularly regarding the expansion process and the filling and exhaust cycles. Overall, the thread emphasizes the importance of accurate modeling for effective performance predictions in compressed air engines.
karan_s
Messages
5
Reaction score
0
TL;DR Summary
I have done some calculations to obtain power from the engine but don't think they are correct. Also need some help calculating torque at different rpms and air tank emptying time.
Hi, I posted a question a while ago which I have managed to do some more calculations for. I need a bit of help to see if they are correct. I am trying to obtain power and torque values at different rotational speeds of a single cylinder compressed air engine. The inlet pressure into the engine is a constant 9 bar and the air is discharged from the chamber as the piston reached BDC rather than a conventional cam valve design. My calculations below for power do no seem right compared to MATLAB and experimental results.

I have attached screenshot as it will not let me post equations into this.

I would like to get torque values at different rpms and also any formulas to calculate how quickly a air tank would empty at a specific rpm.

Much appreciate the help.
 

Attachments

  • Screen Shot 2019-05-01 at 20.18.21.png
    Screen Shot 2019-05-01 at 20.18.21.png
    29.3 KB · Views: 508
  • Screen Shot 2019-05-01 at 20.18.30.png
    Screen Shot 2019-05-01 at 20.18.30.png
    25.2 KB · Views: 532
Engineering news on Phys.org
What sort of engine do you have in mind? Is it a reciprocating machine employing a slider-crank mechanism or a continuous flow machine like an air turbine? You need to tell us more about what you are contemplating before much can be said about your calcs.
 
Dr.D said:
What sort of engine do you have in mind? Is it a reciprocating machine employing a slider-crank mechanism or a continuous flow machine like an air turbine? You need to tell us more about what you are contemplating before much can be said about your calcs.
It would like a reciprocating engine
 
You use of the constant k = 1.4 seems to imply an adiabatic expansion. In fact, it will be more nearly a polytropic expansion, k = 1.35 roughly.

The other problem I see is that you have assumed a very idealized cycle, with instantaneous fill and exhaust; this is not how it actually happens.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly

Similar threads

Replies
22
Views
1K
Replies
45
Views
5K
Replies
14
Views
2K
Replies
5
Views
3K
Back
Top