Compton scattering in a general medium

weafq
Messages
2
Reaction score
2
Homework Statement
In a medium of refractive index 𝑛, the wavelength of light πœ†0 is related to its frequency 𝑓0 . Variables given: input photon frequency 𝑓, outgoing photon angle πœƒ, outgoing photon frequency 𝑓′, outgoing electron angle πœ™, outgoing electron energy 𝐸 and outgoing electron momentum 𝒑. In this problem, the momenta of all particles, before and after, lie entirely in the plane of the paper.

Part 1: Write the energy conservation equation and the momentum conservation equations for Compton scattering for incident and outgoing photons in a medium of refractive index n

Part 2: Solve the equations to obtain the outgoing photon frequency 𝑓′ in the following form:
𝑓′ = [βˆ’π΅ Β± √(𝐡^2 βˆ’ 4𝐴𝐢) ]/ (2𝐴) where you are to determine the unknowns 𝐴, 𝐡 and 𝐢 in terms of 𝑓, 𝑐, 𝑛, πœƒ, and electron rest mass π‘š. You may use the fact that for general (relativistic) electrons, the dispersion relation is 𝐸 = √[(𝑝𝑐)^2 + (π‘šπ‘^2)^2]
Relevant Equations
πœ†0 = 𝑐/(𝑛𝑓0) where 𝑐 is the speed of light in vacuum
For part one, my energy conservation equation is nhf0 + mc2 = nhf' + E

my momentum conservation in x-axis is nhf0= nhf' cos(theta) + c𝒑 cos(fi)

My momentum conservation in y-axis is nhf' sin(theta) = c𝒑 sin(fi)

For part 2 I understand that I am supposed to get a qudratic equation in terms of f' but when I tried combining all three equations but all I did was derive Compton shift equation. Where did I go wrong?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top