Computation of resistance with arbitrary local resistivity rho(x,y,z)

AI Thread Summary
To compute the net electrical resistance of a geometry with position-dependent resistivity, a numerical approach is necessary due to the complexity of the resistivity tensor. The user has a defined shape resembling a parallelepiped with trapezoids and a dataset of coordinates with corresponding resistivity values. The conventional resistance formula R=rho*l/S is not applicable because current preferentially flows through lower resistivity areas. Instead, the user suggests solving the equation J=sigma*E, where sigma is the inverse of the resistivity tensor. Assistance is sought for algorithms capable of handling this computation effectively.
pierebean
Messages
10
Reaction score
0
Bonjour,

I need to numerically compute the net electrical resistance of a given geometry.

I know the shape of my object, it is relatively simple. It's close to this: http://2.imimg.com/data2/QX/UC/IMFCP-3019296/i-shape-big-1-250x250.jpg
Actually my shape is even simpler because it's a parallelepiped flanked by two trapezoids.

As data, I have many points coordinates x,y,z and the corresponding resistivity which is unusually dependant of the position.

my data table looks like that:

x1 y1 z1 rho1
x2 y2 z2 rho2
x3 y3 z3 rho3
x4 y4 z4 rho4
...
ect...
...
xn yn zn rhon

n is my number of point in my geometry.

Naturally, since the electrical current will preferentially go to the low resistivity domain. I cannot use the R=rho*l/S formula.

I probably have to solve J=sigma*E for every point with sigma(x,y,z)=1/rho(x,y,z)

Does someone have any idea of algorithm that can compute the resistance?

Thank you very much

Pierre
 
Physics news on Phys.org
I forgot to mention that my resistivity was a tensor and not a mere scalar.
 
Any leads maybe?
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top