Compute the integral of the Gaussian

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Gaussian Integral
docnet
Messages
796
Reaction score
488
Homework Statement
.
Relevant Equations
.
Screen Shot 2021-12-15 at 2.52.46 AM.png


why does it say transforms? is there more than one Fourier transform?? we learned in class that the inverse Fourier transform of the Fourier transform of ##f## is ##f##, so there should be just one right? I'm uncertain of how to calulate this integral though.. Mr Wolfram showed me an indefinite integral involving an error function, but there has to be a different way to integrate it because we didn't learn about the error function. Mr Wolfram says

$$\int_{-\infty}^\infty fe^{-ikx}dx=\sqrt{\pi}\sigma e^{(\frac{\sigma k}{2})^2}e^{-ikx_0}$$

how does one go from the beginning to the finish?
 
Physics news on Phys.org
Write\begin{align*}
\tilde{f}(k) &= \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
&= e^{-ikx_0} \int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right) dx\end{align*}from here a 'complete-the-square' substitution like ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}## looks helpful, but take some care to justify the limits of the integral over ##u## given that ##u## is complex.
 
Last edited:
ergospherical said:
Write\begin{align*}
\tilde{f}(k) &= \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
&= e^{-ikx_0} \int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right) dx\end{align*}from here a 'complete-the-square' substitution like ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}## looks helpful, but take some care to justify the limits of the integral over ##u## given that ##u## is complex.
\begin{align} \tilde{f}(k) =& \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
=e^{-ikx_0} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right)dx\\
=e^{-ikx_0} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -\frac{\sigma^2i^2k^2}{4}+\frac{\sigma^2i^2k^2}{4}-ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right)dx\\
=e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -(\frac{\sigma i k}{2}+\frac{x-x_0}{\sigma})^2 \right)dx\end{align}
let ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}##. since ##u## is complex, it leads to integrating for ##u\in\{(-\infty,\infty)\times \{0\}\}##.
\begin{align}&\sigma e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}}\int_ u e^{-u^2}du\\
=&\sigma e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}} \Big[\frac{\sqrt{\pi}}{2}\text{erf}(u)\Big]_u\\
=&\sigma \sqrt{\pi} e^{-ikx_0+\frac{\sigma^2k^2}{4}}\end{align}
 
Last edited:
is it ok?
:)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top