Compute the integral of the Gaussian

  • Thread starter docnet
  • Start date
  • #1
docnet
587
242
Homework Statement:
.
Relevant Equations:
.
Screen Shot 2021-12-15 at 2.52.46 AM.png


why does it say transforms? is there more than one Fourier transform?? we learned in class that the inverse Fourier transform of the Fourier transform of ##f## is ##f##, so there should be just one right? I'm uncertain of how to calulate this integral though.. Mr Wolfram showed me an indefinite integral involving an error function, but there has to be a different way to integrate it because we didn't learn about the error function. Mr Wolfram says

$$\int_{-\infty}^\infty fe^{-ikx}dx=\sqrt{\pi}\sigma e^{(\frac{\sigma k}{2})^2}e^{-ikx_0}$$

how does one go from the beginning to the finish?
 

Answers and Replies

  • #2
ergospherical
891
1,222
Write\begin{align*}
\tilde{f}(k) &= \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
&= e^{-ikx_0} \int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right) dx\end{align*}from here a 'complete-the-square' substitution like ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}## looks helpful, but take some care to justify the limits of the integral over ##u## given that ##u## is complex.
 
Last edited:
  • #3
docnet
587
242
Write\begin{align*}
\tilde{f}(k) &= \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
&= e^{-ikx_0} \int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right) dx\end{align*}from here a 'complete-the-square' substitution like ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}## looks helpful, but take some care to justify the limits of the integral over ##u## given that ##u## is complex.
\begin{align} \tilde{f}(k) =& \int_{-\infty}^{\infty} \mathrm{exp}\left( -ikx - \frac{(x-x_0)^2}{\sigma^2} \right) dx \\
=e^{-ikx_0} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right)dx\\
=e^{-ikx_0} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -\frac{\sigma^2i^2k^2}{4}+\frac{\sigma^2i^2k^2}{4}-ik(x-x_0) - \frac{(x-x_0)^2}{\sigma^2} \right)dx\\
=e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}} &\int_{-\infty}^{\infty} \mathrm{exp}\left( -(\frac{\sigma i k}{2}+\frac{x-x_0}{\sigma})^2 \right)dx\end{align}
let ##u = \dfrac{x-x_0}{\sigma} + \dfrac{i\sigma k}{2}##. since ##u## is complex, it leads to integrating for ##u\in\{(-\infty,\infty)\times \{0\}\}##.
\begin{align}&\sigma e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}}\int_ u e^{-u^2}du\\
=&\sigma e^{-ikx_0-\frac{\sigma^2i^2k^2}{4}} \Big[\frac{\sqrt{\pi}}{2}\text{erf}(u)\Big]_u\\
=&\sigma \sqrt{\pi} e^{-ikx_0+\frac{\sigma^2k^2}{4}}\end{align}
 
Last edited:
  • #4
docnet
587
242
is it ok?
:)
 

Suggested for: Compute the integral of the Gaussian

  • Last Post
Replies
5
Views
294
  • Last Post
Replies
2
Views
425
Replies
8
Views
416
Replies
6
Views
424
Replies
10
Views
154
Replies
0
Views
187
Replies
47
Views
2K
  • Last Post
Replies
21
Views
944
Replies
3
Views
427
Top