Compute the residue of a function

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Function Residue
Click For Summary
SUMMARY

The discussion focuses on computing the residue of a function defined as ##h=\frac{f}{g}##, where ##f## and ##g## are holomorphic on the domain ##\Omega##. It is established that if ##z_0## is a removable singularity of ##h##, then ##Res(h,z_0)=0## according to Morera's theorem. The residue can be computed using the limit definition, but complications arise due to indeterminate forms. A suggested method involves using the Taylor series expansion for ##f## and the series for ##1/g## to simplify the computation of the residue.

PREREQUISITES
  • Understanding of holomorphic functions and their properties
  • Familiarity with Morera's theorem and residue theory
  • Knowledge of Taylor series expansions
  • Experience with complex analysis concepts, particularly poles and singularities
NEXT STEPS
  • Study the application of Morera's theorem in complex analysis
  • Learn about residue computation techniques in complex functions
  • Explore Taylor series and their convergence properties
  • Investigate examples of holomorphic functions with removable singularities
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced calculus and residue computation techniques.

docnet
Messages
796
Reaction score
486
Homework Statement
Find ##Res(h,z_0)##
Relevant Equations
##h=\frac{f}{g}##
final. problem 6.png

There is a typo. It should say ##h=\frac{f}{g}##.

Attempt: ##f## and ##g## are holomorphic on ##\Omega##. Homomorphic functions form a ##\mathcal{C}^*## algebra, so ##h## is holomorphic on ##\Omega## where ##g\neq 0##.

If ##z_0## is a removal singularity of ##h##, then ##Res(h,z_0)=0## by Morera's theorem.

Assume ##f(z_0)\neq 0##, then ##z_0## is a second order pole of h since ##g''(x_0)\neq 0 ##.
$$Res(h,z_0)=lim_{z\rightarrow z_0}\frac{d}{dz}\Big[\frac{f}{g}(z-z_0)^2\Big]$$
This method produces indeterminate forms, even after applying the L'Hopital's rule.

Let ##\mathcal{C}=\{z:|z-z_0|=1/2\}##. By Residue theorem,
$$Res(h,z_0)=\frac{1}{2\pi i}\int_\mathcal{C}\frac{f}{g}dz$$
This integral cannot be computed since ##f## and ##g## are not given.

Can anyone think of a clever method that could solve this problem?
 
Last edited:
Physics news on Phys.org
You can just start writing out series. The Taylor series for f is known. For ##1/g##,, you know if looks like ##1/((z-z_0)^2(a+b(z-z_0)+c(z-z_0)^2+...) ## with a nonzero.

You can basically just bash this with the Taylor series of ##1/(1-x)##. Let ##x=\frac{1}{a}(-b(z-z_0)-c(z-z_0)^2+...)## and write
$$\frac{1}{g}= \frac{1}{(z-z_0)^2 a (1-x)}$$

Now apply the normal Taylor expansion to ##1/(1-x)##, and after the first couple terms you should get stuff that is high order in ##(z-z_0)## and hence can be ignored.
 
  • Wow
Likes   Reactions: docnet
Office_Shredder said:
You can just start writing out series. The Taylor series for f is known. For ##1/g##,, you know if looks like ##1/((z-z_0)^2(a+b(z-z_0)+c(z-z_0)^2+...) ## with a nonzero.

You can basically just bash this with the Taylor series of ##1/(1-x)##. Let ##x=\frac{1}{a}(-b(z-z_0)-c(z-z_0)^2+...)## and write
$$\frac{1}{g}= \frac{1}{(z-z_0)^2 a (1-x)}$$

Now apply the normal Taylor expansion to ##1/(1-x)##, and after the first couple terms you should get stuff that is high order in ##(z-z_0)## and hence can be ignored.
Thank you so much for your reply. I will try this method.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K