Computing a variance in astrophysics context

Click For Summary
SUMMARY

The discussion focuses on computing the variance, denoted as ##\sigma_o^2##, in the context of astrophysics, specifically related to photometric galaxy clustering. The covariance expression is derived from the angular power spectra, incorporating terms for Cosmic Variance and Shot Noise. A new observable "O" is introduced, representing the ratio of power matter to angular power spectra, which is crucial for variance calculation. The participants seek clarity on expectations and simplifications necessary to derive ##\sigma_o^2## from the observable "O".

PREREQUISITES
  • Understanding of covariance in astrophysics
  • Familiarity with angular power spectra and multipole analysis
  • Knowledge of Cosmic Variance and Shot Noise concepts
  • Proficiency in statistical expectations and variance calculations
NEXT STEPS
  • Study the derivation of variance in astrophysical contexts using covariance matrices
  • Learn about the implications of Cosmic Variance and Shot Noise in galaxy clustering
  • Explore the mathematical properties of angular power spectra in cosmology
  • Investigate statistical methods for computing expectations in complex ratios
USEFUL FOR

Astrophysicists, cosmologists, and researchers in photometric galaxy clustering who require a deeper understanding of variance calculations and the implications of noise in observational data.

fab13
Messages
300
Reaction score
7
TL;DR
Computing a variance in astrophysics context : the goal is to compute the variance of a ratio of 2 parameters into astrophysics context. I have posted here since the issue is about statistics.
Below the error on photometric galaxy clustering under the form of covariance :

$$

\Delta C_{i j}^{A B}(\ell)=\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}}\left[C_{i j}^{A B}(\ell)+N_{i j}^{A B}(\ell)\right]

$$

where ##_{\text {sky }}## is the fraction of surveyed sky and ##A, B## run over the observables #### and ##, \Delta \ell## is the width of the multipoles bins used when computing the angular power spectra, and ##, j## run over all tomographic bins. The First term ##_{i j}^{A B}## refers to the Cosmic Variance and the second term ##_{i j}^{A B}(\ell)## is the Shot Noise (Poisson noise). We look at here ##, B=G##.

We introduce a new observable called "O"which is the ratio between power matter and angular power spectra

$$

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

$$

Taking the ratio between both, one can write :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{s p, i j}^{G G}}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}^{G G}}\right)^{1 / 2}

$$

We neglect the Poisson noise term ##\Delta C_{p h, i j}^{G G}## (sum of Cosmic Variance and Shot Noise) ##\Delta C_{p h, i j}^{G G}## on denominator since it is very small compared to ##b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}## We consider also the dominance of spectroscopic Shot Noise ##N_{s p, i i}^{G G}(\ell)##in the quantity ##\Delta C_{s p, i j}^{G G}## Let's recall the notation for photometric ##C_{\ell, \text { gal }, \mathrm{ph}}^{\prime}## :

$$

C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}=\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell=b_{p h}^{2} \int_{l_{\min }}^{l_{\max }} C_{\ell, \mathrm{DM}} \mathrm{d} \ell=b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}

$$

This way, one has :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}

$$

and finally for each bin #### :

$$

\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}

$$

with :

$$

N_{s p, i j}^{\mathrm{GG}}(\ell)=\frac{1}{\bar{n}_{s p, i}} \delta_{i j}^{\mathrm{K}}

$$

with ##\bar{n}_{s p, i}## the spectroscopic density of galaxies per bin.QUESTION: How to compute the variance ##\sigma_o^2## from the last simplified expression of the ratio.The issue comes from the fact that I have a square root in my expression for the observable "0" :\begin{equation}

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

\end{equation}I have posted on https://math.stackexchange.com/questions/4087630/variance-of-a-the-root-square-of-a-quantity but from the answer :\begin{align}\operatorname{Var}X&=\Bbb E(X^2)-(\Bbb EX)^2\\&=\Bbb E(b_1^2/b_2^2+N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2\\&=b_1^2/b_2^2+\Bbb E(N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2.\end{align} I have to compute expectation and I don't know how to compute these expectations (relatively to which quantity ? on ##\ell## multipole ? on Observable Covariance ##C_{ij}^{AB}## ?It is confused in my head, if someone could help me or gives suggestions, this would be fine.
 
Physics news on Phys.org
I have just realized tha the simplifed expression :

$$\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}\quad(1)$$

is wrong, I can't infer this from the previous one :

$$O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}\quad(2)$$

How can I simplify the equation (2) to get the expression of ##\sigma_o^{2}## ?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K