A Computing a variance in astrophysics context

fab13
Messages
300
Reaction score
7
TL;DR Summary
Computing a variance in astrophysics context : the goal is to compute the variance of a ratio of 2 parameters into astrophysics context. I have posted here since the issue is about statistics.
Below the error on photometric galaxy clustering under the form of covariance :

$$

\Delta C_{i j}^{A B}(\ell)=\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}}\left[C_{i j}^{A B}(\ell)+N_{i j}^{A B}(\ell)\right]

$$

where ##_{\text {sky }}## is the fraction of surveyed sky and ##A, B## run over the observables #### and ##, \Delta \ell## is the width of the multipoles bins used when computing the angular power spectra, and ##, j## run over all tomographic bins. The First term ##_{i j}^{A B}## refers to the Cosmic Variance and the second term ##_{i j}^{A B}(\ell)## is the Shot Noise (Poisson noise). We look at here ##, B=G##.

We introduce a new observable called "O"which is the ratio between power matter and angular power spectra

$$

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

$$

Taking the ratio between both, one can write :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{s p, i j}^{G G}}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}^{G G}}\right)^{1 / 2}

$$

We neglect the Poisson noise term ##\Delta C_{p h, i j}^{G G}## (sum of Cosmic Variance and Shot Noise) ##\Delta C_{p h, i j}^{G G}## on denominator since it is very small compared to ##b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}## We consider also the dominance of spectroscopic Shot Noise ##N_{s p, i i}^{G G}(\ell)##in the quantity ##\Delta C_{s p, i j}^{G G}## Let's recall the notation for photometric ##C_{\ell, \text { gal }, \mathrm{ph}}^{\prime}## :

$$

C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}=\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell=b_{p h}^{2} \int_{l_{\min }}^{l_{\max }} C_{\ell, \mathrm{DM}} \mathrm{d} \ell=b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}

$$

This way, one has :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}

$$

and finally for each bin #### :

$$

\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}

$$

with :

$$

N_{s p, i j}^{\mathrm{GG}}(\ell)=\frac{1}{\bar{n}_{s p, i}} \delta_{i j}^{\mathrm{K}}

$$

with ##\bar{n}_{s p, i}## the spectroscopic density of galaxies per bin.QUESTION: How to compute the variance ##\sigma_o^2## from the last simplified expression of the ratio.The issue comes from the fact that I have a square root in my expression for the observable "0" :\begin{equation}

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

\end{equation}I have posted on https://math.stackexchange.com/questions/4087630/variance-of-a-the-root-square-of-a-quantity but from the answer :\begin{align}\operatorname{Var}X&=\Bbb E(X^2)-(\Bbb EX)^2\\&=\Bbb E(b_1^2/b_2^2+N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2\\&=b_1^2/b_2^2+\Bbb E(N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2.\end{align} I have to compute expectation and I don't know how to compute these expectations (relatively to which quantity ? on ##\ell## multipole ? on Observable Covariance ##C_{ij}^{AB}## ?It is confused in my head, if someone could help me or gives suggestions, this would be fine.
 
Physics news on Phys.org
I have just realized tha the simplifed expression :

$$\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}\quad(1)$$

is wrong, I can't infer this from the previous one :

$$O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}\quad(2)$$

How can I simplify the equation (2) to get the expression of ##\sigma_o^{2}## ?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top