- #1
- 436
- 25
Let ##L(\vec{r},\dot{\vec{r}})## be the lagrangian function, usually to get angular momentum conservation one impose ##\delta L=0## and form there we get ##\sum \vec{r}\wedge m\vec{v}=const##. There is however a conceptual problem with this procedure related to the fact that invariance under rotation does not necesarily means ##\delta L=0## but more generally ##\delta L=\frac{d F(\vec{r},t)}{dt}## and this gives
$$ \sum \vec{r}\wedge m\vec{v}=F(\vec{r},t)$$
It seems that for a general lagrangian we can't derive angular momentum conservation unless additional hypotheses are introduced concerning the form of the lagrangian function. For instance if we work with the concrete lagrangian ##L=\sum \frac{1}{2}mv^2-U(\vec{r},\dots)## we do get ##F(\vec{r},t)=const##, however for a general lagrangian, as I said before, we don't know. All this also applies to special relativity mechanics.
I would appreciate any comments.
$$ \sum \vec{r}\wedge m\vec{v}=F(\vec{r},t)$$
It seems that for a general lagrangian we can't derive angular momentum conservation unless additional hypotheses are introduced concerning the form of the lagrangian function. For instance if we work with the concrete lagrangian ##L=\sum \frac{1}{2}mv^2-U(\vec{r},\dots)## we do get ##F(\vec{r},t)=const##, however for a general lagrangian, as I said before, we don't know. All this also applies to special relativity mechanics.
I would appreciate any comments.