- #1
the_amateur
- 13
- 0
What is the condition for the continuous time signal x(t) to be periodic if it is the linear combination of n periodic signals.
where
x(t) = a[itex]_{1}[/itex]x[itex]_{1}[/itex](t)+a[itex]_{2}[/itex]x[itex]_{2}[/itex](t)+a[itex]_{3}[/itex]x[itex]_{3}[/itex](t)+......a[itex]_{n}[/itex]x[itex]_{n}[/itex](t)
where
x[itex]_{i}[/itex](t) is periodic with fundamental period T[itex]_{i}[/itex] [itex]\forall[/itex] i, where i [itex]\in[/itex] [1,n]Also provide the fundamental period of x(t) with a proof. thanks.
where
x(t) = a[itex]_{1}[/itex]x[itex]_{1}[/itex](t)+a[itex]_{2}[/itex]x[itex]_{2}[/itex](t)+a[itex]_{3}[/itex]x[itex]_{3}[/itex](t)+......a[itex]_{n}[/itex]x[itex]_{n}[/itex](t)
where
x[itex]_{i}[/itex](t) is periodic with fundamental period T[itex]_{i}[/itex] [itex]\forall[/itex] i, where i [itex]\in[/itex] [1,n]Also provide the fundamental period of x(t) with a proof. thanks.