ghostyc
- 25
- 0
Given X follows an exponential distribution \theta
how could i show something like
\operatorname{E}(X|X \geq \tau)=\tau+\frac 1 \theta
?
i have get the idea of using Memorylessness property here,
but how can i combine the probabilty with the expectation?
thanks.
casper
how could i show something like
\operatorname{E}(X|X \geq \tau)=\tau+\frac 1 \theta
?
i have get the idea of using Memorylessness property here,
but how can i combine the probabilty with the expectation?
thanks.
casper