MHB Conditional Probability and law of total probability.

AI Thread Summary
The discussion revolves around a probability problem involving two urns containing red and blue balls, where the goal is to maximize the chance of survival. The key point is that the probability of living, P(A), can be expressed using the law of total probability based on how the balls are distributed between the urns. The solution shows that if the executioner chooses either urn with equal probability, the formula for P(A) simplifies to (12i - ki + 6k) / k(24-k). A surprising conclusion is that the maximum probability of survival occurs when i and k are both set to 1, yielding a survival probability of approximately 0.739. This problem illustrates the counterintuitive nature of probability in certain scenarios.
luke95
Messages
2
Reaction score
0
This is a fun question i found on the internet, a bit harder than my course and I've spent hours on it but can't find a solution, i was hoping someone could help me.
Here's the situation.
You are in jail and have been sentenced to death tomorrow, however there's a way out.
you're given 12 red balls and 12 blue balls with 2 urns, you have to fully distribute the balls between these two urns. the executioner will then select an urn and draw a ball
if it is blue you live and if it is red you die.
suppose you place k balls into the first urn and 24-k into the second
suppose you put i blue balls into the first urn and 12-i into the second
Let A be the event that you live.
By conditioning on the urn that the executioner chooses, and using the law of total probability show that:

P(A) = (12i - ki + 6k) / k(24-k)

please could you explain the steps used so i can try and understand the solution and method.
Thank you in advance
Luke
 
Mathematics news on Phys.org
luke95 said:
This is a fun question i found on the internet, a bit harder than my course and I've spent hours on it but can't find a solution, i was hoping someone could help me.
Here's the situation.
You are in jail and have been sentenced to death tomorrow, however there's a way out.
you're given 12 red balls and 12 blue balls with 2 urns, you have to fully distribute the balls between these two urns. the executioner will then select an urn and draw a ball
if it is blue you live and if it is red you die.
suppose you place k balls into the first urn and 24-k into the second
suppose you put i blue balls into the first urn and 12-i into the second
Let A be the event that you live.
By conditioning on the urn that the executioner chooses, and using the law of total probability show that:

P(A) = (12i - ki + 6k) / k(24-k)

please could you explain the steps used so i can try and understand the solution and method.
Thank you in advance
Luke

Wellcome on MHB luke 95!... You have i blue balls over k balls in the first urn and 12 - i blue balls over 24 - k balls in the second urn. If You suppose that the probability that executioner chooses first or second urn is the same [$\frac{1}{2}$], being the favourable probability $\frac{i}{k}$ for the first urn and $\frac{12 - i}{24 - k}$ for the second urn, is... $\displaystyle PA = \frac{1}{2}\ \frac{i}{k} + \frac{1}{2}\ \frac{12 - i}{24 - k} = \frac{12\ i - k\ i + 6\ k}{k\ (24 - k)}\ (1)$ Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
Wellcome on MHB luke 95!... You have i blue balls over k balls in the first urn and 12 - i balls over 24 - k balls in the second urn. If You suppose that the probability that executioner chooses first or second urn is the same [$\frac{1}{2}$], being the favourable probability $\frac{i}{k}$ for the first urn and $\frac{12 - i}{24 - k}$ for the second urn, is... $\displaystyle PA = \frac{1}{2}\ \frac{i}{k} + \frac{1}{2}\ \frac{12 - i}{24 - k} = \frac{12\ i - k\ i + 6\ k}{k\ (24 - k)}\ (1)$ Kind regards $\chi$ $\sigma$

thank you very much :)
 
chisigma said:
Wellcome on MHB luke 95!... You have i blue balls over k balls in the first urn and 12 - i blue balls over 24 - k balls in the second urn. If You suppose that the probability that executioner chooses first or second urn is the same [$\frac{1}{2}$], being the favourable probability $\frac{i}{k}$ for the first urn and $\frac{12 - i}{24 - k}$ for the second urn, is... $\displaystyle PA = \frac{1}{2}\ \frac{i}{k} + \frac{1}{2}\ \frac{12 - i}{24 - k} = \frac{12\ i - k\ i + 6\ k}{k\ (24 - k)}\ (1)$ Kind regards $\chi$ $\sigma$

The question proposed by luke95 is 'veryvery interesting' because it leads to a paradoxical conclusion [not unusual in probability ...]. Anybody at first can imagine that at least the chance to survive can be one half but it isn't true. If You look at the (1) in my post You realize that choosing i=k in any case the probability of survive is greater. With a simple further analysis You discover that PA has its maximum for i= k = 1 and in this case is $PA = \frac{17}{23} \sim .739$... incredible!...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top