I Configuring Laws of Motion: Static/Dynamic

Maniac_XOX
Messages
86
Reaction score
5
TL;DR Summary
Is it possible to derive equations for electric field E and magnetic B from the following equation?
$$\Box A_\alpha +\mu^2 A_\alpha = 2\beta A_\mu \partial_\alpha A^\mu + \frac {4\pi}{c} J_\alpha$$

where ##A=(\Phi, \vec A)## and ##J=(\rho, \vec J)##

using a static configuration first where ##α=0##
and then a dynamic one where ##α=i##

knowing that ##E= - \nabla^2 \Phi - \frac {\partial A}{dt}## and ##B= \nabla \times A## and ##-\nabla^2 A + \nabla (\nabla A) = \nabla \times (\nabla \times A)##

I personally tried but because of the ##2\beta A_\mu## term i cannot connect these

My attempts so far:
For static configuration $$- \frac {\partial \Phi}{c^2 \partial t^2} + \nabla^2 \Phi +\mu^2 \Phi = 2\beta A_\mu \frac {\partial A^\mu}{\partial t} + \frac {4\pi}{c} \rho$$
For dynamic configuration $$- \frac {\partial \vec A}{c^2 \partial t^2} + \nabla^2 \vec A +\mu^2 \vec A = 2\beta A_\mu \nabla \vec A + \frac {4\pi}{c} \vec J$$
 
Last edited:
Physics news on Phys.org
[CORRECTION] ##E=-\nabla \Phi- \frac {\partial A}{\partial t}##
For static configuration $$\nabla^2 \Phi +\mu^2 \Phi = + \frac {4\pi}{c} \rho$$
since in static configuration ##\frac {\partial}{\partial t}=0##

can someone help me derive Maxwell's equations for these equations if it's possible?
 
Last edited:
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top