I Confused about identity for product of cosines into a sum of cosines

AI Thread Summary
The discussion focuses on the identity relating the product of cosines to a sum of cosines, emphasizing the repeated application of the two-term product rule. It illustrates how to express the product of multiple cosine terms, such as cos(a)cos(b)cos(c), as a sum of cosine terms by systematically applying the product rule. The process involves distributing terms and recognizing the symmetry in cosine functions, leading to a general formula for k terms. The final expression showcases the relationship between the number of terms and the resulting sum, highlighting the even nature of the cosine function. This explanation clarifies the confusion surrounding the application of these identities in mathematical contexts.
swampwiz
Messages
567
Reaction score
83
What I mean is the way that a product of cosines in which the angles increment the same amount is equal, with some extra terms, of the sum of the cosines.

It is discussed here:

https://math.stackexchange.com/ques...sines-be-rewritten-as-a-finite-sum-of-cosines

But I have no idea how this summation entity is applied.

jk + 1 ∈{ +1 , -1 }

I have been trying to search for a good explanation of this, but most of the time all I get is the stupid identity for the product of a pair of cosines.
 
Mathematics news on Phys.org
I don't know what you mean by "the way this summation entity is applied", but this is just repeated application of the two term product rule. For example
$$\cos(a)\cos(b)\cos(c) = \frac{1}{2}\left(\cos(a+b)+\cos(a-b)\right)\cos(c)$$

Using the product rule on a and b. Then you can distribute the ##\cos(c)##, and apply the product rule to that and ##a+b##, and that with ##a-b## to get

$$\frac{1}{4}\left( \cos(a+b+c)+\cos(a+b-c)+\cos(a-b+c)+\cos(a-b-c)\right)$$

This is just summing every way to pick a sign for b and c, so you can rewrite this as
$$\frac{1}{4} \sum \cos(a\pm b \pm c)$$

Which I think is effectively what is being written in that post. If you had k terms, you would just make that 4 a ##2^{k-1}## and add more ##\pm## terms.

There are eight ways to pick a sign for each of a,b and c, and half of them show up here. The other half are exactly negative of one of the ones that we wrote down, and cosine is an even function, so you could just include them and divide by another factor of two to get
$$\frac{1}{8} \sum \cos( \pm a \pm b \pm c)$$

And similar for if you have more terms.
Hopefully this helps a bit.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top