I Confused about identity for product of cosines into a sum of cosines

swampwiz
Messages
567
Reaction score
83
What I mean is the way that a product of cosines in which the angles increment the same amount is equal, with some extra terms, of the sum of the cosines.

It is discussed here:

https://math.stackexchange.com/ques...sines-be-rewritten-as-a-finite-sum-of-cosines

But I have no idea how this summation entity is applied.

jk + 1 ∈{ +1 , -1 }

I have been trying to search for a good explanation of this, but most of the time all I get is the stupid identity for the product of a pair of cosines.
 
Mathematics news on Phys.org
I don't know what you mean by "the way this summation entity is applied", but this is just repeated application of the two term product rule. For example
$$\cos(a)\cos(b)\cos(c) = \frac{1}{2}\left(\cos(a+b)+\cos(a-b)\right)\cos(c)$$

Using the product rule on a and b. Then you can distribute the ##\cos(c)##, and apply the product rule to that and ##a+b##, and that with ##a-b## to get

$$\frac{1}{4}\left( \cos(a+b+c)+\cos(a+b-c)+\cos(a-b+c)+\cos(a-b-c)\right)$$

This is just summing every way to pick a sign for b and c, so you can rewrite this as
$$\frac{1}{4} \sum \cos(a\pm b \pm c)$$

Which I think is effectively what is being written in that post. If you had k terms, you would just make that 4 a ##2^{k-1}## and add more ##\pm## terms.

There are eight ways to pick a sign for each of a,b and c, and half of them show up here. The other half are exactly negative of one of the ones that we wrote down, and cosine is an even function, so you could just include them and divide by another factor of two to get
$$\frac{1}{8} \sum \cos( \pm a \pm b \pm c)$$

And similar for if you have more terms.
Hopefully this helps a bit.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top