Confused by this result for the tensor product of two vectors

Click For Summary
SUMMARY

The discussion centers on the tensor product of two probability distributions, specifically ##p \in R^{m}_{+}## and ##q \in R^{n}_{+}##. The original paper defines the tensor product as a column vector, which contrasts with the expected matrix representation. The confusion arises from differing notational conventions, particularly in relation to the Kronecker product. The author emphasizes that while the notation may vary, all elements are indeed represented in the defined tensor product.

PREREQUISITES
  • Understanding of tensor products and their mathematical definitions.
  • Familiarity with probability distributions and their notation.
  • Knowledge of matrix operations, particularly matrix multiplication.
  • Basic comprehension of Kronecker products and their properties.
NEXT STEPS
  • Study the formal definition of tensor products in linear algebra.
  • Learn about the properties and applications of Kronecker products.
  • Explore matrix multiplication techniques and their implications in tensor products.
  • Read Laub's "Matrix Analysis for Scientists & Engineers" for a deeper understanding of matrix operations.
USEFUL FOR

Mathematicians, data scientists, and anyone involved in linear algebra or probability theory who seeks clarity on tensor and Kronecker products.

Prez Cannady
Messages
21
Reaction score
2
Given two probability distributions ##p \in R^{m}_{+}## and ##q \in R^{n}_{+}## (the "+" subscript simply indicates non-negative elements), this paper (page 4) writes down the tensor product as

$$p \otimes q := \begin{pmatrix}
p(1)q(1) \\
p(1)q(2) \\
\vdots \\
p(1)q(n) \\
\vdots \\
p(m)q(n)
\end{pmatrix}, $$

yet I expected to see

$$p \otimes q := \begin{pmatrix}
p(1)q(1) && p(1)q(2) && \cdots && p(1)q(n-1) && p(1)q(n) \\
p(2)q(1) && \ddots && && && p(2)q(n) \\
\vdots && && \ddots && && \vdots \\
p(m-1)q(1) && && && \ddots && p(m-1)q(n) \\
p(m)q(1) && p(m)q(2) && \cdots && p(m)q(n-1) && p(m)q(n)
\end{pmatrix}, $$

Am I missing something?
 
Physics news on Phys.org
Well, they define, so they call the shots. At least they explain clearly what they mean:
Above, we have introduced the notation ⊗ to denote the tensor product, which in general maps a pair of vectors with dimensions ##m, n## to a single vector with dimension ##mn##
so all the elements you expected to see are present.
 
Last edited:
  • Like
Likes   Reactions: Prez Cannady
I'd also prefer the matrix notation, because the tensor product then becomes an ordinary matrix multiplication: column times row. But who says you can't write a matrix as a column? I think it's more convenient for type setting than it is mathematically, but in the end it depends on what you want to do with it.
 
  • Like
Likes   Reactions: Prez Cannady
Prez Cannady said:
Given two probability distributions ##p \in R^{m}_{+}## and ##q \in R^{n}_{+}## (the "+" subscript simply indicates non-negative elements), this paper (page 4) writes down the tensor product as

$$p \otimes q := \begin{pmatrix}
p(1)q(1) \\
p(1)q(2) \\
\vdots \\
p(1)q(n) \\
\vdots \\
p(m)q(n)
\end{pmatrix}, $$

yet I expected to see

$$p \otimes q := \begin{pmatrix}
p(1)q(1) && p(1)q(2) && \cdots && p(1)q(n-1) && p(1)q(n) \\
p(2)q(1) && \ddots && && && p(2)q(n) \\
\vdots && && \ddots && && \vdots \\
p(m-1)q(1) && && && \ddots && p(m-1)q(n) \\
p(m)q(1) && p(m)q(2) && \cdots && p(m)q(n-1) && p(m)q(n)
\end{pmatrix}, $$

Am I missing something?

For the Kronecker product this is actually a very common definition. In fact if you use the standard definition for the Kronecker product of

##
\mathbf X \otimes \mathbf Y = \begin{bmatrix}
x_{1,1}\mathbf Y & \cdots & x_{1,n}\mathbf Y\\
\vdots & \ddots & \vdots \\
x_{m,1}\mathbf Y & \cdots & x_{m,n}\mathbf Y
\end{bmatrix}##

where ##\mathbf X## is ##\text{m x n}##
- - - -
and you then constrain ##\mathbf X## and ##\mathbf Y## to be column vectors, you really have no choice but to have

##\mathbf {xy}^* = \mathbf x \otimes \mathbf y^* ##

and
##\mathbf x^* \otimes \mathbf y = \mathbf y \mathbf x^* ##

but

##\mathbf x \otimes \mathbf y##

is a column vector.

Notation and definitions can be tweaked slightly to get very different results, which is unfortunately, confusing.

- - - -
There's a nice free 12 page sample chapter and walkthrough of Kronecker products in Laub's "Matrix Analysis for Scientists & Engineers" -- I gave an indirect link here:

https://www.physicsforums.com/threa...vector-subspace-of-r-2-2.929266/#post-5868072

(page 2 of said sample chapter addresses your question directly)
 
  • Like
Likes   Reactions: Prez Cannady

Similar threads

  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K