- #1

- 775

- 1

## Main Question or Discussion Point

Can an ellipse's focal points be outside the ellipse? I have tried googling this, but without any good explanations or answers.

According to my calculations, the focal points of the ellipse defined by [itex] x^{2} + \frac{y^{2}}{4} = 1 [/itex] are [itex] (-\sqrt{3},0) (\sqrt{3},0)) [/itex].

I maybe wrong of course, but does this mean that the focal points of an ellipse can indeed be outside the ellipse?

BiP

According to my calculations, the focal points of the ellipse defined by [itex] x^{2} + \frac{y^{2}}{4} = 1 [/itex] are [itex] (-\sqrt{3},0) (\sqrt{3},0)) [/itex].

I maybe wrong of course, but does this mean that the focal points of an ellipse can indeed be outside the ellipse?

BiP