Understanding the Relationship between Connection and Metric in Curved Spacetime

  • Thread starter Thread starter gnieddu
  • Start date Start date
  • Tags Tags
    Connection Metric
gnieddu
Messages
24
Reaction score
1
Hi,

I'm struggling to grasp the physical reason behind the fact that, in a curved spacetime, a change of metric implies, in general, a change of connection, i.e. if I have two metrics g_{ab} and \hat{g}_{ab}, in general \nabla_a \neq \hat{\nabla}_a.

Besides this, is there any relationship between the two connections? In other words, if I know \nabla_aT for a given tensor T, is there a general formula which converts it into \hat{\nabla}_aT?

Thanks
 
Physics news on Phys.org
There isn't such a thing as "the" connection. There are many possible connections. In general relativity, the connection is chosen to be the Levi-Civita connection, which is defined by the metric.
 
gnieddu said:
Hi,

I'm struggling to grasp the physical reason behind the fact that, in a curved spacetime, a change of metric implies, in general, a change of connection, i.e. if I have two metrics g_{ab} and \hat{g}_{ab}, in general \nabla_a \neq \hat{\nabla}_a.

Imagine stretching a surface embedded in Euclidean space in a non-uniform way. This is a change of the induced metric on the surface, and you can see that parallel transported vectors on the original surface are no longer parallel transported. This is why the connection changes when the metric is changed. Another way to see it is to imagine taking a flat surface with straight lines drawn on it, and then stretching it over a sphere. There are many ways to do this, and in generel, the straight lines need not become great circles on the sphere, i.e. they are no longer geodesics with the new induced metric. Since the set of geodesics determine the connection, and since geodesics are not preserved by changes of metric, the connection must change.

gnieddu said:
Besides this, is there any relationship between the two connections? In other words, if I know \nabla_aT for a given tensor T, is there a general formula which converts it into \hat{\nabla}_aT?

Thanks

You simply have to re-calculate the Christoffel symbols with the new metric.
 
Last edited:
Thanks!
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top