- #1
- 43
- 0
Hi,
In general relativity we have no general conservation of energy and momentum. But if there exists a Killing-field we can show that this leads to a symmetry in spacetime and so to a conserved quantity. Thats what the mathematic tells us. But I don't understand what's the meaning of an timelike/spacelike/lightlike Killing-field? For conservation of energy is it important to have the field ∂t or must it be an arbitrary timelike Killing-field?
If we look at the Kerr solution we see that for some spacetime region the field ∂t will be timelike and for another it will be spacelike Killing-field. What consequences has this for the conserved quantities, since its still a Killing-field?
Thanks for help
Neutrino
In general relativity we have no general conservation of energy and momentum. But if there exists a Killing-field we can show that this leads to a symmetry in spacetime and so to a conserved quantity. Thats what the mathematic tells us. But I don't understand what's the meaning of an timelike/spacelike/lightlike Killing-field? For conservation of energy is it important to have the field ∂t or must it be an arbitrary timelike Killing-field?
If we look at the Kerr solution we see that for some spacetime region the field ∂t will be timelike and for another it will be spacelike Killing-field. What consequences has this for the conserved quantities, since its still a Killing-field?
Thanks for help
Neutrino