PeterDonis said:
if you add up the 4-angular momentum tensors for all four photons, the components that change with time all cancel, so the tensor of the system as a whole is still constant in time.
Let me derive this result explicitly for the CoM frame. We'll consider the 4-angular momentum tensors of each photon before and after it hits a mirror at a time which is now not restricted to ##t = 0##. In the CoM frame, these times are given by ##t = 2n##, where ##n## is any integer. So the 4-position vectors of the four mirrors are:
Mirror A: ##(2n, 1, 1)##
Mirror B: ##(2n, -1, 1)##
Mirror C: ##(2n, -1, -1)##
Mirror D: ##(2n, 1, -1)##
We have already shown that the 4-angular momentum tensor of any photon does not change in flight; so all we need to consider are the bounces. That means we don't have to worry about which photon is hitting which mirror at which time; we just need to use the "before" and "after" 4-momentum of whichever photon is hitting each mirror, and those will be the same for each mirror at each bounce. So the 4-momentum vectors are (just to re-post them for clarity):
Photon hitting Mirror A: ##(k, 0, k)## before, ##(k, -k, 0)## after.
Photon hitting Mirror B: ##(k, -k, 0)## before, ##(k, 0, -k)## after.
Photon hitting Mirror C: ##(k, 0, -k)## before, ##(k, k, 0)## after.
Photon hitting Mirror D: ##(k, k, 0)## before, ##(k, 0, k)## after.
The four individual tensors are then (labeling them by the mirror and "before" or "after"):
$$
M^{ab}_{A-before} = \left[ \begin{matrix}
0 & -k & \left( 2n - 1 \right) k \\
k & 0 & k \\
- \left( 2n - 1 \right) k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{A-after} = \left[ \begin{matrix}
0 & - \left( 2n + 1 \right) k & -k \\
\left( 2n + 1 \right) k & 0 & k \\
k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{B-before} = \left[ \begin{matrix}
0 & - \left( 2n - 1 \right) k & -k \\
\left( 2n - 1 \right) k & 0 & k \\
k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{B-after} = \left[ \begin{matrix}
0 & k & - \left( 2n + 1 \right) k \\
-k & 0 & k \\
\left( 2n + 1 \right) k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{C-before} = \left[ \begin{matrix}
0 & k & - \left( 2n - 1 \right) k \\
-k & 0 & k \\
\left( 2n - 1 \right) k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{C-after} = \left[ \begin{matrix}
0 & \left( 2n + 1 \right) k & k \\
- \left( 2n + 1 \right) k & 0 & k \\
-k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{D-before} = \left[ \begin{matrix}
0 & \left( 2n - 1 \right) k & k \\
- \left( 2n - 1 \right) k & 0 & k \\
-k & -k & 0
\end{matrix} \right]
$$
$$
M^{ab}_{D-after} = \left[ \begin{matrix}
0 & -k & \left( 2n + 1 \right) k \\
k & 0 & k \\
- \left( 2n + 1 \right) k & -k & 0
\end{matrix} \right]
$$
Adding up the "before" and "after" tensors separately, it is evident that in each one, all the ##n## dependent terms cancel, and we are left with just the overall tensor
$$
M^{ab} = \left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 4k \\ 0 & -4k & 0 \end{matrix} \right]
$$
A similar calculation can be done in the moving frame.