B Conservation of Angular Momentum - Problem understanding this scenario

AI Thread Summary
In a closed system, both linear and angular momentum are conserved, but their conservation can appear counterintuitive in certain scenarios. When two equal mass balls are fired from a stationary disk in opposite directions, the linear momentum remains zero, while the disk begins to spin, indicating a change in angular momentum. The key point is that the angular momentum of the balls must be considered, as they possess angular momentum relative to the center of the disk. This illustrates how linear motion can still contribute to angular momentum when measured from a specific point. Understanding these relationships clarifies the conservation principles in such dynamic systems.
jonhswon
Messages
10
Reaction score
4
Hello,

As far I know, in a closed system both, linear and angular monentums, are conserved.

İmagine such a scenario: everything is motionless, both momentums zero initially, then from a disk are fired (compressed spring push) two equal mass balls at same speed but opposite direction. Now balls fly away and disk is spinning. Linear momentum after firing is still zero, but angular momentum is not? What is happening?

(All usual assumptions in place, inertial reference, massless springs, etc..)

Thnaks in advance.

1702886385490.png
 
Last edited:
Physics news on Phys.org
jonhswon said:
angular momentum is not
Have you taken into account the angular momentum of the balls?
 
  • Like
Likes vanhees71 and PeroK
... an object moving in a straight line at constant velocity has angular momentum about any point not on the line of motion.

Note also that angular momentum is always measured relative to some point.
 
  • Like
Likes vanhees71 and Ibix
OMG I was so blind. Thanks a lot !
 
I first had this discussion the other way round when a classmate at university lobbed a shoe at the door to shut it. It's quite neat how the changing tangential component of linear velocity cancels with the changing radial distance to produce a constant angular momentum for an object in linear motion.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top