Conservation of Momentum in Skating Question

AI Thread Summary
The discussion revolves around a physics problem involving conservation of momentum in figure skating, where Phrank collides with Phyllis and they slide together. Two solutions were proposed, yielding different distances traveled after the collision: 1.44 m from the first solution and 1.0548 m from the second. The discrepancy arises because the second solution incorrectly used the initial velocity of Phrank instead of the post-collision velocity of the combined mass. Clarification was provided that the final velocity should be zero when calculating the distance traveled after they come to rest. The first solution is confirmed as the more accurate approach.
Ketchup1
Messages
2
Reaction score
0
Hello, I've recently came across a question that I have two solutions for. Though I don't see how either of them can be wrong, I'm getting two different answers :( Can someone explain me why this is happening (maybe I'm doing something wrong?) and which solution is better to use.

Homework Statement



During a free dance program in figure skating, Phrank (m = 71kg) glides at a 2.1m/s to a stationary Phyllis (m= 52kg) and hangs on. How far will the pair slide after the "collision" if coefficient of kinetic friction (μk) between their skates and the ice is 0.052?

Homework Equations



m1v1 1+m2v2 2=(m1+m2)vf (Inelastic collision, since Phrank grabs on)

Solution 1:
F⋅Δt=Δp =m(vf−vi) (Impulse)
Δd = 1/2(vi+vf)Δt

Solution 2:
W=F⋅d
Wnet=ΔK

The Attempt at a Solution



Solution 1:

Use the inelastic collision formula to solve for the final velocity (vf).
m1v1 + m2v2 = (m1+m2)vf
(71kg)(2.1m/s) + (52kg)(0) = (71kg + 52kg)vf
vf = 1.2122m/s

Plug that into the impulse forumla.
F⋅Δt=Δp =m(vf−vi)
Δt = Δp/F
Δt = m(vf - vi)/μk⋅m⋅g (masses cancel out)
Δt = vf - vi/μk⋅g
Δt = (0 - 2.1m/s)/0.052⋅9.81 m/s2
Δt = 2.3763s

Plug the time into the the second kinematics equation.
Δd = 1/2(vi+vf)Δt
Δd = 1/2(2.1m/s + 1.2122m/s)(2.3763s)
Δd = 1.44 m

Solution 2:

Use the inelastic collision formula to solve for the final velocity (vf).
m1v1 + m2v2 = (m1+m2)vf
(71kg)(2.1m/s) + (52kg)(0) = (71kg + 52kg)vf
vf = 1.2122m/s

Combine the two work equations.
W=F⋅d
Wnet=ΔK
F⋅d=ΔK
Δd = ΔK/F
Δd = 1/2(m1 + m2)vf2 - 1/2(m1)(v1)2 / μk⋅m⋅g

Its messy, so I'll skip plugging in all the values.

Δd = -66.185/-62.74476
Δd = 1.0548m

Both solutions seem reasonable to me, but why am I getting two different answers? Which solution is more accurate?
 
Physics news on Phys.org
Ketchup1 said:
Hello, I've recently came across a question that I have two solutions for. Though I don't see how either of them can be wrong, I'm getting two different answers :( Can someone explain me why this is happening (maybe I'm doing something wrong?) and which solution is better to use.

Homework Statement



During a free dance program in figure skating, Phrank (m = 71kg) glides at a 2.1m/s to a stationary Phyllis (m= 52kg) and hangs on. How far will the pair slide after the "collision" if coefficient of kinetic friction (μk) between their skates and the ice is 0.052?

Homework Equations



m1v1 1+m2v2 2=(m1+m2)vf (Inelastic collision, since Phrank grabs on)

Solution 1:
F⋅Δt=Δp =m(vf−vi) (Impulse)
Δd = 1/2(vi+vf)Δt

Solution 2:
W=F⋅d
Wnet=ΔK

The Attempt at a Solution



Solution 1:

Use the inelastic collision formula to solve for the final velocity (vf).
m1v1 + m2v2 = (m1+m2)vf
(71kg)(2.1m/s) + (52kg)(0) = (71kg + 52kg)vf
vf = 1.2122m/s

Plug that into the impulse forumla.
F⋅Δt=Δp =m(vf−vi)
Δt = Δp/F
Δt = m(vf - vi)/μk⋅m⋅g (masses cancel out)
Δt = vf - vi/μk⋅g
Δt = (0 - 2.1m/s)/0.052⋅9.81 m/s2
Δt = 2.3763s

Plug the time into the the second kinematics equation.
Δd = 1/2(vi+vf)Δt
Δd = 1/2(2.1m/s + 1.2122m/s)(2.3763s)
Δd = 1.44 m

Solution 2:

Use the inelastic collision formula to solve for the final velocity (vf).
m1v1 + m2v2 = (m1+m2)vf
(71kg)(2.1m/s) + (52kg)(0) = (71kg + 52kg)vf
vf = 1.2122m/s

Combine the two work equations.
W=F⋅d
Wnet=ΔK
F⋅d=ΔK
Δd = ΔK/F
Δd = 1/2(m1 + m2)vf2 - 1/2(m1)(v1)2 / μk⋅m⋅g

Its messy, so I'll skip plugging in all the values.

Δd = -66.185/-62.74476
Δd = 1.0548m

Both solutions seem reasonable to me, but why am I getting two different answers? Which solution is more accurate?

Hi Ketchup1, Welcome to Physics Forums.

I think something's gone wrong in your second solution. To find the distance traveled via the work done keep in mind that the initial velocity is that of the post-collision pair, and the final velocity is zero (they come to rest when their traveling is done).
 
Oh! That works out! I didn't think of that for some reason
Thank you very much :D
The answer works out perfectly.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top