Constructing time-independent wave function with given energies

droedujay
Messages
12
Reaction score
0
Does anyone know how to construct a Time-independent wave function with given energies and probability on obtaining energies.
 
Physics news on Phys.org
Are you asking about constructing an initial wave function, \Psi (x,0), for a particle in a potential given that information?

If so, what you are describing can be done by using the expansion theorem. Using that theorem, you can express a general time-independent wave function as an infinite sum of the energy eigenstates:

| \Psi > = \sum_n^{\infty} C_n |n>

where |n> is the wave function for the energy E_n and C_n is the probability for measuring that energy.

I can't offer anything more specific given that information, but if you have a homework problem or something similar involving this, please post it in the homework help forum and I'll help you if I can.
 
Last edited:
I found out the Coefficient expansion theorem and constructed the following wavefunction:

Ψ(x,0) = 1/sqrt(2)*φ1 + sqrt(2/5)*φ3 + 1/sqrt(10)*φ5
where φn = sqrt(2/a)*sin(n*pi*x/a)

Is this unique why or why not? I'm thinking that it has something to do with all odd Energies.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
6
Views
2K
Replies
2
Views
3K
Replies
9
Views
2K
Replies
4
Views
1K
Replies
14
Views
679
Replies
33
Views
3K
Replies
10
Views
2K
Back
Top