Construction of the Number Systems .... Natural, Integers, Rationals and Reals

Click For Summary
SUMMARY

The discussion centers on the construction of number systems, specifically natural numbers, integers, rationals, and reals. Participants recommend Ethan D. Bloch's "The Real Numbers and Real Analysis" for its detailed proofs, while also highlighting Edmund Landau's "Foundations of Analysis" as an accessible and elementary text. The conversation emphasizes that many calculus textbooks, including Vladimir Zorich's "Mathematical Analysis," adopt an axiomatic approach to introduce real numbers and their subsets. Additionally, the construction of numbers is often explored within set theory and proof theory, although these details may exceed the requirements for calculus.

PREREQUISITES
  • Understanding of set theory and axiomatic systems
  • Familiarity with Peano axioms and proof theory
  • Basic knowledge of mathematical logic
  • Experience with calculus concepts
NEXT STEPS
  • Study the axiomatic approach to real numbers in "Mathematical Analysis" by Vladimir Zorich
  • Explore the construction of natural numbers using Peano axioms
  • Review set theory fundamentals related to number systems
  • Investigate proof theory and its applications in mathematical logic
USEFUL FOR

Mathematicians, educators, and students seeking a deeper understanding of number systems, particularly those involved in mathematical logic and analysis.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
At present I am trying to understand the construction of the number systems ... natural, integers, rationals and reals ...

What do members of MHBs think is the clearest, most detailed, most rigorous and best treatment of number systems in a textbook or in online notes ... ?

NOTE: I am currently using Ethan D Bloch: "The Real Numbers and Real Analysis" ... ... where the coverage is detailed ... and proofs in particular are detailed and in full ... but some of the explanations are not particularly clear ... ...Peter
 
Last edited:
Physics news on Phys.org
I heard "Foundations of Analysis" by Edmund Landau is good. It was written in the first half of the 20th century, and it is rather elementary.

Constructions of different classes of numbers are often studied in set theory, which is a part of mathematical logic. But the exposition there start with sets and axioms rather than natural numbers. Then one shows how to construct natural numbers, how to define functions by recursion and only then goes to arithmetic operations and other classes of numbers. These are more details than one usually needs for calculus. Natural numbers and Peano axioms ($x+(y+1)=(x+y)+1$, etc.) are studied in proof theory, which is also a part of mathematical logic. (Peano arithmetic is a favorite logical theory.) But again, things studied there are usually not needed in calculus.

I would think that the first chapters of many calculus textbooks contain information about the construction of numbers. However, some textbooks, such as "Mathematical Analysis" by Vladimir Zorich, use axiomatic approach. They introduce real numbers as a set satisfying some axioms and other classes of numbers as subsets of real numbers.
 
Evgeny.Makarov said:
I heard "Foundations of Analysis" by Edmund Landau is good. It was written in the first half of the 20th century, and it is rather elementary.

Constructions of different classes of numbers are often studied in set theory, which is a part of mathematical logic. But the exposition there start with sets and axioms rather than natural numbers. Then one shows how to construct natural numbers, how to define functions by recursion and only then goes to arithmetic operations and other classes of numbers. These are more details than one usually needs for calculus. Natural numbers and Peano axioms ($x+(y+1)=(x+y)+1$, etc.) are studied in proof theory, which is also a part of mathematical logic. (Peano arithmetic is a favorite logical theory.) But again, things studied there are usually not needed in calculus.

I would think that the first chapters of many calculus textbooks contain information about the construction of numbers. However, some textbooks, such as "Mathematical Analysis" by Vladimir Zorich, use axiomatic approach. They introduce real numbers as a set satisfying some axioms and other classes of numbers as subsets of real numbers.

Totally agree on the Landau recommendation. Very accessible, clear and direct. Highly recommended!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K