(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

let g denote the elliptic arc parametrized by z(t) = 2cost + 3isint, for t between 0 and pi/2 (inclusive).

Evaluate the integral of f(z) = z[sin(pi*z^2) - cos(pi*z^2)] over g.

2. Relevant equations

If g is determined by the function z mapping from [a,b] to C and f maps from g to C, then the integral of f over g is defined as the integral (from a to b) of f of z(t) times z'(t).

(sorry for writing the equations out in words, I don't have any formatting software)

3. The attempt at a solution

I started by finding z'(t) = -2sint + 3icost and attempting to find f(z(t)), but I got a really complicated function and at that point I figured I must be going about it the wrong way.

I tried to find an identity that would allow me to simplifiy f(z) but I couldn't find anything.

At this point I really have no idea how to proceed.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Contour integral (from complex analysis)

**Physics Forums | Science Articles, Homework Help, Discussion**