MHB Contraction mapping (Maryam Ishfaq's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Contraction Mapping
Click For Summary
A contraction mapping T on a metric space is proven to be a continuous mapping due to its Lipschitz condition. Specifically, if T satisfies the Lipschitz condition with a constant K, then it can be shown that T is uniformly continuous. By choosing an appropriate delta in relation to epsilon, the continuity of T follows. Since a contraction is a special case of a Lipschitz mapping where K is less than 1, it inherently possesses continuity. Thus, every contraction mapping is confirmed to be continuous in the context of metric spaces.
Mathematics news on Phys.org
Hello Maryam Ishfaq,

The result is more general. Suppose $(E,d)$ is a metric space and $T:E\to E$ is a Lipschitz mapping, i.e. there is a positive constant $K$ such that $d(T(x),T(y))\le Kd(x,y)$ for all $x,y\in E$. Then, for all $\epsilon >0$ and choosing $\delta=\epsilon/K:$ $$d(x,y)<\delta \Rightarrow d(T(x),T(y))\le Kd(x,y)<K\frac{\epsilon}{K}\Rightarrow d(T(x),T(y))<\epsilon$$ This means that every Lipschitz mapping is uniformly continuous, as a consequence continuous. But a contraction map is a Lipschitz mapping with $K<1$, hence every contraction is a continuous mapping.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K